1       SUBROUTINE ZPFTRI( TRANSR, UPLO, N, A, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1)                                    --
  4 *
  5 *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
  6 *  -- April 2011                                                      --
  7 *
  8 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  9 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          TRANSR, UPLO
 13       INTEGER            INFO, N
 14 *     .. Array Arguments ..
 15       COMPLEX*16         A( 0* )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZPFTRI computes the inverse of a complex Hermitian positive definite
 22 *  matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
 23 *  computed by ZPFTRF.
 24 *
 25 *  Arguments
 26 *  =========
 27 *
 28 *  TRANSR    (input) CHARACTER*1
 29 *          = 'N':  The Normal TRANSR of RFP A is stored;
 30 *          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          = 'U':  Upper triangle of A is stored;
 34 *          = 'L':  Lower triangle of A is stored.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix A.  N >= 0.
 38 *
 39 *  A       (input/output) COMPLEX*16 array, dimension ( N*(N+1)/2 );
 40 *          On entry, the Hermitian matrix A in RFP format. RFP format is
 41 *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
 42 *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
 43 *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
 44 *          the Conjugate-transpose of RFP A as defined when
 45 *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
 46 *          follows: If UPLO = 'U' the RFP A contains the nt elements of
 47 *          upper packed A. If UPLO = 'L' the RFP A contains the elements
 48 *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
 49 *          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
 50 *          is odd. See the Note below for more details.
 51 *
 52 *          On exit, the Hermitian inverse of the original matrix, in the
 53 *          same storage format.
 54 *
 55 *  INFO    (output) INTEGER
 56 *          = 0:  successful exit
 57 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 58 *          > 0:  if INFO = i, the (i,i) element of the factor U or L is
 59 *                zero, and the inverse could not be computed.
 60 *
 61 *  Further Details
 62 *  ===============
 63 *
 64 *  We first consider Standard Packed Format when N is even.
 65 *  We give an example where N = 6.
 66 *
 67 *      AP is Upper             AP is Lower
 68 *
 69 *   00 01 02 03 04 05       00
 70 *      11 12 13 14 15       10 11
 71 *         22 23 24 25       20 21 22
 72 *            33 34 35       30 31 32 33
 73 *               44 45       40 41 42 43 44
 74 *                  55       50 51 52 53 54 55
 75 *
 76 *
 77 *  Let TRANSR = 'N'. RFP holds AP as follows:
 78 *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 79 *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 80 *  conjugate-transpose of the first three columns of AP upper.
 81 *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 82 *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 83 *  conjugate-transpose of the last three columns of AP lower.
 84 *  To denote conjugate we place -- above the element. This covers the
 85 *  case N even and TRANSR = 'N'.
 86 *
 87 *         RFP A                   RFP A
 88 *
 89 *                                -- -- --
 90 *        03 04 05                33 43 53
 91 *                                   -- --
 92 *        13 14 15                00 44 54
 93 *                                      --
 94 *        23 24 25                10 11 55
 95 *
 96 *        33 34 35                20 21 22
 97 *        --
 98 *        00 44 45                30 31 32
 99 *        -- --
100 *        01 11 55                40 41 42
101 *        -- -- --
102 *        02 12 22                50 51 52
103 *
104 *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
105 *  transpose of RFP A above. One therefore gets:
106 *
107 *
108 *           RFP A                   RFP A
109 *
110 *     -- -- -- --                -- -- -- -- -- --
111 *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
112 *     -- -- -- -- --                -- -- -- -- --
113 *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
114 *     -- -- -- -- -- --                -- -- -- --
115 *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
116 *
117 *
118 *  We next  consider Standard Packed Format when N is odd.
119 *  We give an example where N = 5.
120 *
121 *     AP is Upper                 AP is Lower
122 *
123 *   00 01 02 03 04              00
124 *      11 12 13 14              10 11
125 *         22 23 24              20 21 22
126 *            33 34              30 31 32 33
127 *               44              40 41 42 43 44
128 *
129 *
130 *  Let TRANSR = 'N'. RFP holds AP as follows:
131 *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
132 *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
133 *  conjugate-transpose of the first two   columns of AP upper.
134 *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
135 *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
136 *  conjugate-transpose of the last two   columns of AP lower.
137 *  To denote conjugate we place -- above the element. This covers the
138 *  case N odd  and TRANSR = 'N'.
139 *
140 *         RFP A                   RFP A
141 *
142 *                                   -- --
143 *        02 03 04                00 33 43
144 *                                      --
145 *        12 13 14                10 11 44
146 *
147 *        22 23 24                20 21 22
148 *        --
149 *        00 33 34                30 31 32
150 *        -- --
151 *        01 11 44                40 41 42
152 *
153 *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
154 *  transpose of RFP A above. One therefore gets:
155 *
156 *
157 *           RFP A                   RFP A
158 *
159 *     -- -- --                   -- -- -- -- -- --
160 *     02 12 22 00 01             00 10 20 30 40 50
161 *     -- -- -- --                   -- -- -- -- --
162 *     03 13 23 33 11             33 11 21 31 41 51
163 *     -- -- -- -- --                   -- -- -- --
164 *     04 14 24 34 44             43 44 22 32 42 52
165 *
166 *  =====================================================================
167 *
168 *     .. Parameters ..
169       DOUBLE PRECISION   ONE
170       COMPLEX*16         CONE
171       PARAMETER          ( ONE = 1.D0, CONE = ( 1.D00.D0 ) )
172 *     ..
173 *     .. Local Scalars ..
174       LOGICAL            LOWER, NISODD, NORMALTRANSR
175       INTEGER            N1, N2, K
176 *     ..
177 *     .. External Functions ..
178       LOGICAL            LSAME
179       EXTERNAL           LSAME
180 *     ..
181 *     .. External Subroutines ..
182       EXTERNAL           XERBLA, ZTFTRI, ZLAUUM, ZTRMM, ZHERK
183 *     ..
184 *     .. Intrinsic Functions ..
185       INTRINSIC          MOD
186 *     ..
187 *     .. Executable Statements ..
188 *
189 *     Test the input parameters.
190 *
191       INFO = 0
192       NORMALTRANSR = LSAME( TRANSR, 'N' )
193       LOWER = LSAME( UPLO, 'L' )
194       IF.NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
195          INFO = -1
196       ELSE IF.NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
197          INFO = -2
198       ELSE IF( N.LT.0 ) THEN
199          INFO = -3
200       END IF
201       IF( INFO.NE.0 ) THEN
202          CALL XERBLA( 'ZPFTRI'-INFO )
203          RETURN
204       END IF
205 *
206 *     Quick return if possible
207 *
208       IF( N.EQ.0 )
209      $   RETURN
210 *
211 *     Invert the triangular Cholesky factor U or L.
212 *
213       CALL ZTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
214       IF( INFO.GT.0 )
215      $   RETURN
216 *
217 *     If N is odd, set NISODD = .TRUE.
218 *     If N is even, set K = N/2 and NISODD = .FALSE.
219 *
220       IFMOD( N, 2 ).EQ.0 ) THEN
221          K = N / 2
222          NISODD = .FALSE.
223       ELSE
224          NISODD = .TRUE.
225       END IF
226 *
227 *     Set N1 and N2 depending on LOWER
228 *
229       IF( LOWER ) THEN
230          N2 = N / 2
231          N1 = N - N2
232       ELSE
233          N1 = N / 2
234          N2 = N - N1
235       END IF
236 *
237 *     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
238 *     inv(L)^C*inv(L). There are eight cases.
239 *
240       IF( NISODD ) THEN
241 *
242 *        N is odd
243 *
244          IF( NORMALTRANSR ) THEN
245 *
246 *           N is odd and TRANSR = 'N'
247 *
248             IF( LOWER ) THEN
249 *
250 *              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
251 *              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
252 *              T1 -> a(0), T2 -> a(n), S -> a(N1)
253 *
254                CALL ZLAUUM( 'L', N1, A( 0 ), N, INFO )
255                CALL ZHERK( 'L''C', N1, N2, ONE, A( N1 ), N, ONE,
256      $                     A( 0 ), N )
257                CALL ZTRMM( 'L''U''N''N', N2, N1, CONE, A( N ), N,
258      $                     A( N1 ), N )
259                CALL ZLAUUM( 'U', N2, A( N ), N, INFO )
260 *
261             ELSE
262 *
263 *              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
264 *              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
265 *              T1 -> a(N2), T2 -> a(N1), S -> a(0)
266 *
267                CALL ZLAUUM( 'L', N1, A( N2 ), N, INFO )
268                CALL ZHERK( 'L''N', N1, N2, ONE, A( 0 ), N, ONE,
269      $                     A( N2 ), N )
270                CALL ZTRMM( 'R''U''C''N', N1, N2, CONE, A( N1 ), N,
271      $                     A( 0 ), N )
272                CALL ZLAUUM( 'U', N2, A( N1 ), N, INFO )
273 *
274             END IF
275 *
276          ELSE
277 *
278 *           N is odd and TRANSR = 'C'
279 *
280             IF( LOWER ) THEN
281 *
282 *              SRPA for LOWER, TRANSPOSE, and N is odd
283 *              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
284 *
285                CALL ZLAUUM( 'U', N1, A( 0 ), N1, INFO )
286                CALL ZHERK( 'U''N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
287      $                     A( 0 ), N1 )
288                CALL ZTRMM( 'R''L''N''N', N1, N2, CONE, A( 1 ), N1,
289      $                     A( N1*N1 ), N1 )
290                CALL ZLAUUM( 'L', N2, A( 1 ), N1, INFO )
291 *
292             ELSE
293 *
294 *              SRPA for UPPER, TRANSPOSE, and N is odd
295 *              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
296 *
297                CALL ZLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
298                CALL ZHERK( 'U''C', N1, N2, ONE, A( 0 ), N2, ONE,
299      $                     A( N2*N2 ), N2 )
300                CALL ZTRMM( 'L''L''C''N', N2, N1, CONE, A( N1*N2 ),
301      $                     N2, A( 0 ), N2 )
302                CALL ZLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
303 *
304             END IF
305 *
306          END IF
307 *
308       ELSE
309 *
310 *        N is even
311 *
312          IF( NORMALTRANSR ) THEN
313 *
314 *           N is even and TRANSR = 'N'
315 *
316             IF( LOWER ) THEN
317 *
318 *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
319 *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
320 *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
321 *
322                CALL ZLAUUM( 'L', K, A( 1 ), N+1, INFO )
323                CALL ZHERK( 'L''C', K, K, ONE, A( K+1 ), N+1, ONE,
324      $                     A( 1 ), N+1 )
325                CALL ZTRMM( 'L''U''N''N', K, K, CONE, A( 0 ), N+1,
326      $                     A( K+1 ), N+1 )
327                CALL ZLAUUM( 'U', K, A( 0 ), N+1, INFO )
328 *
329             ELSE
330 *
331 *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
332 *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
333 *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
334 *
335                CALL ZLAUUM( 'L', K, A( K+1 ), N+1, INFO )
336                CALL ZHERK( 'L''N', K, K, ONE, A( 0 ), N+1, ONE,
337      $                     A( K+1 ), N+1 )
338                CALL ZTRMM( 'R''U''C''N', K, K, CONE, A( K ), N+1,
339      $                     A( 0 ), N+1 )
340                CALL ZLAUUM( 'U', K, A( K ), N+1, INFO )
341 *
342             END IF
343 *
344          ELSE
345 *
346 *           N is even and TRANSR = 'C'
347 *
348             IF( LOWER ) THEN
349 *
350 *              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
351 *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
352 *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
353 *
354                CALL ZLAUUM( 'U', K, A( K ), K, INFO )
355                CALL ZHERK( 'U''N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
356      $                     A( K ), K )
357                CALL ZTRMM( 'R''L''N''N', K, K, CONE, A( 0 ), K,
358      $                     A( K*( K+1 ) ), K )
359                CALL ZLAUUM( 'L', K, A( 0 ), K, INFO )
360 *
361             ELSE
362 *
363 *              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
364 *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
365 *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
366 *
367                CALL ZLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
368                CALL ZHERK( 'U''C', K, K, ONE, A( 0 ), K, ONE,
369      $                     A( K*( K+1 ) ), K )
370                CALL ZTRMM( 'L''L''C''N', K, K, CONE, A( K*K ), K,
371      $                     A( 0 ), K )
372                CALL ZLAUUM( 'L', K, A( K*K ), K, INFO )
373 *
374             END IF
375 *
376          END IF
377 *
378       END IF
379 *
380       RETURN
381 *
382 *     End of ZPFTRI
383 *
384       END