1       SUBROUTINE ZPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  2 *
  3 *     -- LAPACK routine (version 3.3.1)                                 --
  4 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  5 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  6 *     -- November 2008                                                --
  7 *
  8 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
  9 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 10 *
 11       IMPLICIT NONE
 12 *     ..
 13 *     .. Scalar Arguments ..
 14       INTEGER            INFO, LDA, N
 15       DOUBLE PRECISION   AMAX, SCOND
 16 *     ..
 17 *     .. Array Arguments ..
 18       COMPLEX*16         A( LDA, * )
 19       DOUBLE PRECISION   S( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  ZPOEQUB computes row and column scalings intended to equilibrate a
 26 *  symmetric positive definite matrix A and reduce its condition number
 27 *  (with respect to the two-norm).  S contains the scale factors,
 28 *  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 29 *  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 30 *  choice of S puts the condition number of B within a factor N of the
 31 *  smallest possible condition number over all possible diagonal
 32 *  scalings.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  N       (input) INTEGER
 38 *          The order of the matrix A.  N >= 0.
 39 *
 40 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 41 *          The N-by-N symmetric positive definite matrix whose scaling
 42 *          factors are to be computed.  Only the diagonal elements of A
 43 *          are referenced.
 44 *
 45 *  LDA     (input) INTEGER
 46 *          The leading dimension of the array A.  LDA >= max(1,N).
 47 *
 48 *  S       (output) DOUBLE PRECISION array, dimension (N)
 49 *          If INFO = 0, S contains the scale factors for A.
 50 *
 51 *  SCOND   (output) DOUBLE PRECISION
 52 *          If INFO = 0, S contains the ratio of the smallest S(i) to
 53 *          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 54 *          large nor too small, it is not worth scaling by S.
 55 *
 56 *  AMAX    (output) DOUBLE PRECISION
 57 *          Absolute value of largest matrix element.  If AMAX is very
 58 *          close to overflow or very close to underflow, the matrix
 59 *          should be scaled.
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0:  successful exit
 63 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 64 *          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 65 *
 66 *  =====================================================================
 67 *
 68 *     .. Parameters ..
 69       DOUBLE PRECISION   ZERO, ONE
 70       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 71 *     ..
 72 *     .. Local Scalars ..
 73       INTEGER            I
 74       DOUBLE PRECISION   SMIN, BASE, TMP
 75       COMPLEX*16         ZDUM
 76 *     ..
 77 *     .. External Functions ..
 78       DOUBLE PRECISION   DLAMCH
 79       EXTERNAL           DLAMCH
 80 *     ..
 81 *     .. External Subroutines ..
 82       EXTERNAL           XERBLA
 83 *     ..
 84 *     .. Intrinsic Functions ..
 85       INTRINSIC          MAXMINSQRTLOGINT, REAL, DIMAG
 86 *     ..
 87 *     .. Executable Statements ..
 88 *
 89 *     Test the input parameters.
 90 *
 91 *     Positive definite only performs 1 pass of equilibration.
 92 *
 93       INFO = 0
 94       IF( N.LT.0 ) THEN
 95          INFO = -1
 96       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 97          INFO = -3
 98       END IF
 99       IF( INFO.NE.0 ) THEN
100          CALL XERBLA( 'ZPOEQUB'-INFO )
101          RETURN
102       END IF
103 *
104 *     Quick return if possible.
105 *
106       IF( N.EQ.0 ) THEN
107          SCOND = ONE
108          AMAX = ZERO
109          RETURN
110       END IF
111 
112       BASE = DLAMCH( 'B' )
113       TMP = -0.5D+0 / LOG ( BASE )
114 *
115 *     Find the minimum and maximum diagonal elements.
116 *
117       S( 1 ) = A( 11 )
118       SMIN = S( 1 )
119       AMAX = S( 1 )
120       DO 10 I = 2, N
121          S( I ) = A( I, I )
122          SMIN = MIN( SMIN, S( I ) )
123          AMAX = MAX( AMAX, S( I ) )
124    10 CONTINUE
125 *
126       IF( SMIN.LE.ZERO ) THEN
127 *
128 *        Find the first non-positive diagonal element and return.
129 *
130          DO 20 I = 1, N
131             IF( S( I ).LE.ZERO ) THEN
132                INFO = I
133                RETURN
134             END IF
135    20    CONTINUE
136       ELSE
137 *
138 *        Set the scale factors to the reciprocals
139 *        of the diagonal elements.
140 *
141          DO 30 I = 1, N
142             S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
143    30    CONTINUE
144 *
145 *        Compute SCOND = min(S(I)) / max(S(I)).
146 *
147          SCOND = SQRT( SMIN ) / SQRT( AMAX )
148       END IF
149 *
150       RETURN
151 *
152 *     End of ZPOEQUB
153 *
154       END