1       SUBROUTINE ZPOTF2( UPLO, N, A, LDA, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZPOTF2 computes the Cholesky factorization of a complex Hermitian
 20 *  positive definite matrix A.
 21 *
 22 *  The factorization has the form
 23 *     A = U**H * U ,  if UPLO = 'U', or
 24 *     A = L  * L**H,  if UPLO = 'L',
 25 *  where U is an upper triangular matrix and L is lower triangular.
 26 *
 27 *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          Specifies whether the upper or lower triangular part of the
 34 *          Hermitian matrix A is stored.
 35 *          = 'U':  Upper triangular
 36 *          = 'L':  Lower triangular
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix A.  N >= 0.
 40 *
 41 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 42 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 43 *          n by n upper triangular part of A contains the upper
 44 *          triangular part of the matrix A, and the strictly lower
 45 *          triangular part of A is not referenced.  If UPLO = 'L', the
 46 *          leading n by n lower triangular part of A contains the lower
 47 *          triangular part of the matrix A, and the strictly upper
 48 *          triangular part of A is not referenced.
 49 *
 50 *          On exit, if INFO = 0, the factor U or L from the Cholesky
 51 *          factorization A = U**H *U  or A = L*L**H.
 52 *
 53 *  LDA     (input) INTEGER
 54 *          The leading dimension of the array A.  LDA >= max(1,N).
 55 *
 56 *  INFO    (output) INTEGER
 57 *          = 0: successful exit
 58 *          < 0: if INFO = -k, the k-th argument had an illegal value
 59 *          > 0: if INFO = k, the leading minor of order k is not
 60 *               positive definite, and the factorization could not be
 61 *               completed.
 62 *
 63 *  =====================================================================
 64 *
 65 *     .. Parameters ..
 66       DOUBLE PRECISION   ONE, ZERO
 67       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 68       COMPLEX*16         CONE
 69       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
 70 *     ..
 71 *     .. Local Scalars ..
 72       LOGICAL            UPPER
 73       INTEGER            J
 74       DOUBLE PRECISION   AJJ
 75 *     ..
 76 *     .. External Functions ..
 77       LOGICAL            LSAME, DISNAN
 78       COMPLEX*16         ZDOTC
 79       EXTERNAL           LSAME, ZDOTC, DISNAN
 80 *     ..
 81 *     .. External Subroutines ..
 82       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZLACGV
 83 *     ..
 84 *     .. Intrinsic Functions ..
 85       INTRINSIC          DBLEMAXSQRT
 86 *     ..
 87 *     .. Executable Statements ..
 88 *
 89 *     Test the input parameters.
 90 *
 91       INFO = 0
 92       UPPER = LSAME( UPLO, 'U' )
 93       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 94          INFO = -1
 95       ELSE IF( N.LT.0 ) THEN
 96          INFO = -2
 97       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 98          INFO = -4
 99       END IF
100       IF( INFO.NE.0 ) THEN
101          CALL XERBLA( 'ZPOTF2'-INFO )
102          RETURN
103       END IF
104 *
105 *     Quick return if possible
106 *
107       IF( N.EQ.0 )
108      $   RETURN
109 *
110       IF( UPPER ) THEN
111 *
112 *        Compute the Cholesky factorization A = U**H *U.
113 *
114          DO 10 J = 1, N
115 *
116 *           Compute U(J,J) and test for non-positive-definiteness.
117 *
118             AJJ = DBLE( A( J, J ) ) - ZDOTC( J-1, A( 1, J ), 1,
119      $            A( 1, J ), 1 )
120             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
121                A( J, J ) = AJJ
122                GO TO 30
123             END IF
124             AJJ = SQRT( AJJ )
125             A( J, J ) = AJJ
126 *
127 *           Compute elements J+1:N of row J.
128 *
129             IF( J.LT.N ) THEN
130                CALL ZLACGV( J-1, A( 1, J ), 1 )
131                CALL ZGEMV( 'Transpose', J-1, N-J, -CONE, A( 1, J+1 ),
132      $                     LDA, A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
133                CALL ZLACGV( J-1, A( 1, J ), 1 )
134                CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
135             END IF
136    10    CONTINUE
137       ELSE
138 *
139 *        Compute the Cholesky factorization A = L*L**H.
140 *
141          DO 20 J = 1, N
142 *
143 *           Compute L(J,J) and test for non-positive-definiteness.
144 *
145             AJJ = DBLE( A( J, J ) ) - ZDOTC( J-1, A( J, 1 ), LDA,
146      $            A( J, 1 ), LDA )
147             IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
148                A( J, J ) = AJJ
149                GO TO 30
150             END IF
151             AJJ = SQRT( AJJ )
152             A( J, J ) = AJJ
153 *
154 *           Compute elements J+1:N of column J.
155 *
156             IF( J.LT.N ) THEN
157                CALL ZLACGV( J-1, A( J, 1 ), LDA )
158                CALL ZGEMV( 'No transpose', N-J, J-1-CONE, A( J+11 ),
159      $                     LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
160                CALL ZLACGV( J-1, A( J, 1 ), LDA )
161                CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
162             END IF
163    20    CONTINUE
164       END IF
165       GO TO 40
166 *
167    30 CONTINUE
168       INFO = J
169 *
170    40 CONTINUE
171       RETURN
172 *
173 *     End of ZPOTF2
174 *
175       END