1       SUBROUTINE ZPPCON( UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          UPLO
 12       INTEGER            INFO, N
 13       DOUBLE PRECISION   ANORM, RCOND
 14 *     ..
 15 *     .. Array Arguments ..
 16       DOUBLE PRECISION   RWORK( * )
 17       COMPLEX*16         AP( * ), WORK( * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  ZPPCON estimates the reciprocal of the condition number (in the
 24 *  1-norm) of a complex Hermitian positive definite packed matrix using
 25 *  the Cholesky factorization A = U**H*U or A = L*L**H computed by
 26 *  ZPPTRF.
 27 *
 28 *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
 29 *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  UPLO    (input) CHARACTER*1
 35 *          = 'U':  Upper triangle of A is stored;
 36 *          = 'L':  Lower triangle of A is stored.
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix A.  N >= 0.
 40 *
 41 *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 42 *          The triangular factor U or L from the Cholesky factorization
 43 *          A = U**H*U or A = L*L**H, packed columnwise in a linear
 44 *          array.  The j-th column of U or L is stored in the array AP
 45 *          as follows:
 46 *          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 47 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
 48 *
 49 *  ANORM   (input) DOUBLE PRECISION
 50 *          The 1-norm (or infinity-norm) of the Hermitian matrix A.
 51 *
 52 *  RCOND   (output) DOUBLE PRECISION
 53 *          The reciprocal of the condition number of the matrix A,
 54 *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 55 *          estimate of the 1-norm of inv(A) computed in this routine.
 56 *
 57 *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
 58 *
 59 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0:  successful exit
 63 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 64 *
 65 *  =====================================================================
 66 *
 67 *     .. Parameters ..
 68       DOUBLE PRECISION   ONE, ZERO
 69       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 70 *     ..
 71 *     .. Local Scalars ..
 72       LOGICAL            UPPER
 73       CHARACTER          NORMIN
 74       INTEGER            IX, KASE
 75       DOUBLE PRECISION   AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
 76       COMPLEX*16         ZDUM
 77 *     ..
 78 *     .. Local Arrays ..
 79       INTEGER            ISAVE( 3 )
 80 *     ..
 81 *     .. External Functions ..
 82       LOGICAL            LSAME
 83       INTEGER            IZAMAX
 84       DOUBLE PRECISION   DLAMCH
 85       EXTERNAL           LSAME, IZAMAX, DLAMCH
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLATPS
 89 *     ..
 90 *     .. Intrinsic Functions ..
 91       INTRINSIC          ABSDBLEDIMAG
 92 *     ..
 93 *     .. Statement Functions ..
 94       DOUBLE PRECISION   CABS1
 95 *     ..
 96 *     .. Statement Function definitions ..
 97       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
 98 *     ..
 99 *     .. Executable Statements ..
100 *
101 *     Test the input parameters.
102 *
103       INFO = 0
104       UPPER = LSAME( UPLO, 'U' )
105       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
106          INFO = -1
107       ELSE IF( N.LT.0 ) THEN
108          INFO = -2
109       ELSE IF( ANORM.LT.ZERO ) THEN
110          INFO = -4
111       END IF
112       IF( INFO.NE.0 ) THEN
113          CALL XERBLA( 'ZPPCON'-INFO )
114          RETURN
115       END IF
116 *
117 *     Quick return if possible
118 *
119       RCOND = ZERO
120       IF( N.EQ.0 ) THEN
121          RCOND = ONE
122          RETURN
123       ELSE IF( ANORM.EQ.ZERO ) THEN
124          RETURN
125       END IF
126 *
127       SMLNUM = DLAMCH( 'Safe minimum' )
128 *
129 *     Estimate the 1-norm of the inverse.
130 *
131       KASE = 0
132       NORMIN = 'N'
133    10 CONTINUE
134       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
135       IF( KASE.NE.0 ) THEN
136          IF( UPPER ) THEN
137 *
138 *           Multiply by inv(U**H).
139 *
140             CALL ZLATPS( 'Upper''Conjugate transpose''Non-unit',
141      $                   NORMIN, N, AP, WORK, SCALEL, RWORK, INFO )
142             NORMIN = 'Y'
143 *
144 *           Multiply by inv(U).
145 *
146             CALL ZLATPS( 'Upper''No transpose''Non-unit', NORMIN, N,
147      $                   AP, WORK, SCALEU, RWORK, INFO )
148          ELSE
149 *
150 *           Multiply by inv(L).
151 *
152             CALL ZLATPS( 'Lower''No transpose''Non-unit', NORMIN, N,
153      $                   AP, WORK, SCALEL, RWORK, INFO )
154             NORMIN = 'Y'
155 *
156 *           Multiply by inv(L**H).
157 *
158             CALL ZLATPS( 'Lower''Conjugate transpose''Non-unit',
159      $                   NORMIN, N, AP, WORK, SCALEU, RWORK, INFO )
160          END IF
161 *
162 *        Multiply by 1/SCALE if doing so will not cause overflow.
163 *
164          SCALE = SCALEL*SCALEU
165          IFSCALE.NE.ONE ) THEN
166             IX = IZAMAX( N, WORK, 1 )
167             IFSCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
168      $         GO TO 20
169             CALL ZDRSCL( N, SCALE, WORK, 1 )
170          END IF
171          GO TO 10
172       END IF
173 *
174 *     Compute the estimate of the reciprocal condition number.
175 *
176       IF( AINVNM.NE.ZERO )
177      $   RCOND = ( ONE / AINVNM ) / ANORM
178 *
179    20 CONTINUE
180       RETURN
181 *
182 *     End of ZPPCON
183 *
184       END