1       SUBROUTINE ZSPTRF( UPLO, N, AP, IPIV, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       COMPLEX*16         AP( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZSPTRF computes the factorization of a complex symmetric matrix A
 21 *  stored in packed format using the Bunch-Kaufman diagonal pivoting
 22 *  method:
 23 *
 24 *     A = U*D*U**T  or  A = L*D*L**T
 25 *
 26 *  where U (or L) is a product of permutation and unit upper (lower)
 27 *  triangular matrices, and D is symmetric and block diagonal with
 28 *  1-by-1 and 2-by-2 diagonal blocks.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  UPLO    (input) CHARACTER*1
 34 *          = 'U':  Upper triangle of A is stored;
 35 *          = 'L':  Lower triangle of A is stored.
 36 *
 37 *  N       (input) INTEGER
 38 *          The order of the matrix A.  N >= 0.
 39 *
 40 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 41 *          On entry, the upper or lower triangle of the symmetric matrix
 42 *          A, packed columnwise in a linear array.  The j-th column of A
 43 *          is stored in the array AP as follows:
 44 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 45 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 46 *
 47 *          On exit, the block diagonal matrix D and the multipliers used
 48 *          to obtain the factor U or L, stored as a packed triangular
 49 *          matrix overwriting A (see below for further details).
 50 *
 51 *  IPIV    (output) INTEGER array, dimension (N)
 52 *          Details of the interchanges and the block structure of D.
 53 *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 54 *          interchanged and D(k,k) is a 1-by-1 diagonal block.
 55 *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
 56 *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
 57 *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
 58 *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
 59 *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0: successful exit
 63 *          < 0: if INFO = -i, the i-th argument had an illegal value
 64 *          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
 65 *               has been completed, but the block diagonal matrix D is
 66 *               exactly singular, and division by zero will occur if it
 67 *               is used to solve a system of equations.
 68 *
 69 *  Further Details
 70 *  ===============
 71 *
 72 *  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
 73 *         Company
 74 *
 75 *  If UPLO = 'U', then A = U*D*U**T, where
 76 *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 77 *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 78 *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 79 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 80 *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 81 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 82 *
 83 *             (   I    v    0   )   k-s
 84 *     U(k) =  (   0    I    0   )   s
 85 *             (   0    0    I   )   n-k
 86 *                k-s   s   n-k
 87 *
 88 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 89 *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 90 *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 91 *
 92 *  If UPLO = 'L', then A = L*D*L**T, where
 93 *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 94 *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 95 *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 96 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 97 *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 98 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 99 *
100 *             (   I    0     0   )  k-1
101 *     L(k) =  (   0    I     0   )  s
102 *             (   0    v     I   )  n-k-s+1
103 *                k-1   s  n-k-s+1
104 *
105 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
106 *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
107 *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
108 *
109 *  =====================================================================
110 *
111 *     .. Parameters ..
112       DOUBLE PRECISION   ZERO, ONE
113       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
114       DOUBLE PRECISION   EIGHT, SEVTEN
115       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
116       COMPLEX*16         CONE
117       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
118 *     ..
119 *     .. Local Scalars ..
120       LOGICAL            UPPER
121       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
122      $                   KSTEP, KX, NPP
123       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
124       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, ZDUM
125 *     ..
126 *     .. External Functions ..
127       LOGICAL            LSAME
128       INTEGER            IZAMAX
129       EXTERNAL           LSAME, IZAMAX
130 *     ..
131 *     .. External Subroutines ..
132       EXTERNAL           XERBLA, ZSCAL, ZSPR, ZSWAP
133 *     ..
134 *     .. Intrinsic Functions ..
135       INTRINSIC          ABSDBLEDIMAGMAXSQRT
136 *     ..
137 *     .. Statement Functions ..
138       DOUBLE PRECISION   CABS1
139 *     ..
140 *     .. Statement Function definitions ..
141       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
142 *     ..
143 *     .. Executable Statements ..
144 *
145 *     Test the input parameters.
146 *
147       INFO = 0
148       UPPER = LSAME( UPLO, 'U' )
149       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
150          INFO = -1
151       ELSE IF( N.LT.0 ) THEN
152          INFO = -2
153       END IF
154       IF( INFO.NE.0 ) THEN
155          CALL XERBLA( 'ZSPTRF'-INFO )
156          RETURN
157       END IF
158 *
159 *     Initialize ALPHA for use in choosing pivot block size.
160 *
161       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
162 *
163       IF( UPPER ) THEN
164 *
165 *        Factorize A as U*D*U**T using the upper triangle of A
166 *
167 *        K is the main loop index, decreasing from N to 1 in steps of
168 *        1 or 2
169 *
170          K = N
171          KC = ( N-1 )*/ 2 + 1
172    10    CONTINUE
173          KNC = KC
174 *
175 *        If K < 1, exit from loop
176 *
177          IF( K.LT.1 )
178      $      GO TO 110
179          KSTEP = 1
180 *
181 *        Determine rows and columns to be interchanged and whether
182 *        a 1-by-1 or 2-by-2 pivot block will be used
183 *
184          ABSAKK = CABS1( AP( KC+K-1 ) )
185 *
186 *        IMAX is the row-index of the largest off-diagonal element in
187 *        column K, and COLMAX is its absolute value
188 *
189          IF( K.GT.1 ) THEN
190             IMAX = IZAMAX( K-1, AP( KC ), 1 )
191             COLMAX = CABS1( AP( KC+IMAX-1 ) )
192          ELSE
193             COLMAX = ZERO
194          END IF
195 *
196          IFMAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
197 *
198 *           Column K is zero: set INFO and continue
199 *
200             IF( INFO.EQ.0 )
201      $         INFO = K
202             KP = K
203          ELSE
204             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
205 *
206 *              no interchange, use 1-by-1 pivot block
207 *
208                KP = K
209             ELSE
210 *
211                ROWMAX = ZERO
212                JMAX = IMAX
213                KX = IMAX*( IMAX+1 ) / 2 + IMAX
214                DO 20 J = IMAX + 1, K
215                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
216                      ROWMAX = CABS1( AP( KX ) )
217                      JMAX = J
218                   END IF
219                   KX = KX + J
220    20          CONTINUE
221                KPC = ( IMAX-1 )*IMAX / 2 + 1
222                IF( IMAX.GT.1 ) THEN
223                   JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
224                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
225                END IF
226 *
227                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
228 *
229 *                 no interchange, use 1-by-1 pivot block
230 *
231                   KP = K
232                ELSE IF( CABS1( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
233 *
234 *                 interchange rows and columns K and IMAX, use 1-by-1
235 *                 pivot block
236 *
237                   KP = IMAX
238                ELSE
239 *
240 *                 interchange rows and columns K-1 and IMAX, use 2-by-2
241 *                 pivot block
242 *
243                   KP = IMAX
244                   KSTEP = 2
245                END IF
246             END IF
247 *
248             KK = K - KSTEP + 1
249             IF( KSTEP.EQ.2 )
250      $         KNC = KNC - K + 1
251             IF( KP.NE.KK ) THEN
252 *
253 *              Interchange rows and columns KK and KP in the leading
254 *              submatrix A(1:k,1:k)
255 *
256                CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
257                KX = KPC + KP - 1
258                DO 30 J = KP + 1, KK - 1
259                   KX = KX + J - 1
260                   T = AP( KNC+J-1 )
261                   AP( KNC+J-1 ) = AP( KX )
262                   AP( KX ) = T
263    30          CONTINUE
264                T = AP( KNC+KK-1 )
265                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
266                AP( KPC+KP-1 ) = T
267                IF( KSTEP.EQ.2 ) THEN
268                   T = AP( KC+K-2 )
269                   AP( KC+K-2 ) = AP( KC+KP-1 )
270                   AP( KC+KP-1 ) = T
271                END IF
272             END IF
273 *
274 *           Update the leading submatrix
275 *
276             IF( KSTEP.EQ.1 ) THEN
277 *
278 *              1-by-1 pivot block D(k): column k now holds
279 *
280 *              W(k) = U(k)*D(k)
281 *
282 *              where U(k) is the k-th column of U
283 *
284 *              Perform a rank-1 update of A(1:k-1,1:k-1) as
285 *
286 *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
287 *
288                R1 = CONE / AP( KC+K-1 )
289                CALL ZSPR( UPLO, K-1-R1, AP( KC ), 1, AP )
290 *
291 *              Store U(k) in column k
292 *
293                CALL ZSCAL( K-1, R1, AP( KC ), 1 )
294             ELSE
295 *
296 *              2-by-2 pivot block D(k): columns k and k-1 now hold
297 *
298 *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
299 *
300 *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
301 *              of U
302 *
303 *              Perform a rank-2 update of A(1:k-2,1:k-2) as
304 *
305 *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
306 *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
307 *
308                IF( K.GT.2 ) THEN
309 *
310                   D12 = AP( K-1+( K-1 )*/ 2 )
311                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
312                   D11 = AP( K+( K-1 )*/ 2 ) / D12
313                   T = CONE / ( D11*D22-CONE )
314                   D12 = T / D12
315 *
316                   DO 50 J = K - 21-1
317                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
318      $                      AP( J+( K-1 )*/ 2 ) )
319                      WK = D12*( D22*AP( J+( K-1 )*/ 2 )-
320      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
321                      DO 40 I = J, 1-1
322                         AP( I+( J-1 )*/ 2 ) = AP( I+( J-1 )*/ 2 ) -
323      $                     AP( I+( K-1 )*/ 2 )*WK -
324      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
325    40                CONTINUE
326                      AP( J+( K-1 )*/ 2 ) = WK
327                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
328    50             CONTINUE
329 *
330                END IF
331             END IF
332          END IF
333 *
334 *        Store details of the interchanges in IPIV
335 *
336          IF( KSTEP.EQ.1 ) THEN
337             IPIV( K ) = KP
338          ELSE
339             IPIV( K ) = -KP
340             IPIV( K-1 ) = -KP
341          END IF
342 *
343 *        Decrease K and return to the start of the main loop
344 *
345          K = K - KSTEP
346          KC = KNC - K
347          GO TO 10
348 *
349       ELSE
350 *
351 *        Factorize A as L*D*L**T using the lower triangle of A
352 *
353 *        K is the main loop index, increasing from 1 to N in steps of
354 *        1 or 2
355 *
356          K = 1
357          KC = 1
358          NPP = N*( N+1 ) / 2
359    60    CONTINUE
360          KNC = KC
361 *
362 *        If K > N, exit from loop
363 *
364          IF( K.GT.N )
365      $      GO TO 110
366          KSTEP = 1
367 *
368 *        Determine rows and columns to be interchanged and whether
369 *        a 1-by-1 or 2-by-2 pivot block will be used
370 *
371          ABSAKK = CABS1( AP( KC ) )
372 *
373 *        IMAX is the row-index of the largest off-diagonal element in
374 *        column K, and COLMAX is its absolute value
375 *
376          IF( K.LT.N ) THEN
377             IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
378             COLMAX = CABS1( AP( KC+IMAX-K ) )
379          ELSE
380             COLMAX = ZERO
381          END IF
382 *
383          IFMAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
384 *
385 *           Column K is zero: set INFO and continue
386 *
387             IF( INFO.EQ.0 )
388      $         INFO = K
389             KP = K
390          ELSE
391             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
392 *
393 *              no interchange, use 1-by-1 pivot block
394 *
395                KP = K
396             ELSE
397 *
398 *              JMAX is the column-index of the largest off-diagonal
399 *              element in row IMAX, and ROWMAX is its absolute value
400 *
401                ROWMAX = ZERO
402                KX = KC + IMAX - K
403                DO 70 J = K, IMAX - 1
404                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
405                      ROWMAX = CABS1( AP( KX ) )
406                      JMAX = J
407                   END IF
408                   KX = KX + N - J
409    70          CONTINUE
410                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
411                IF( IMAX.LT.N ) THEN
412                   JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
413                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
414                END IF
415 *
416                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
417 *
418 *                 no interchange, use 1-by-1 pivot block
419 *
420                   KP = K
421                ELSE IF( CABS1( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
422 *
423 *                 interchange rows and columns K and IMAX, use 1-by-1
424 *                 pivot block
425 *
426                   KP = IMAX
427                ELSE
428 *
429 *                 interchange rows and columns K+1 and IMAX, use 2-by-2
430 *                 pivot block
431 *
432                   KP = IMAX
433                   KSTEP = 2
434                END IF
435             END IF
436 *
437             KK = K + KSTEP - 1
438             IF( KSTEP.EQ.2 )
439      $         KNC = KNC + N - K + 1
440             IF( KP.NE.KK ) THEN
441 *
442 *              Interchange rows and columns KK and KP in the trailing
443 *              submatrix A(k:n,k:n)
444 *
445                IF( KP.LT.N )
446      $            CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
447      $                        1 )
448                KX = KNC + KP - KK
449                DO 80 J = KK + 1, KP - 1
450                   KX = KX + N - J + 1
451                   T = AP( KNC+J-KK )
452                   AP( KNC+J-KK ) = AP( KX )
453                   AP( KX ) = T
454    80          CONTINUE
455                T = AP( KNC )
456                AP( KNC ) = AP( KPC )
457                AP( KPC ) = T
458                IF( KSTEP.EQ.2 ) THEN
459                   T = AP( KC+1 )
460                   AP( KC+1 ) = AP( KC+KP-K )
461                   AP( KC+KP-K ) = T
462                END IF
463             END IF
464 *
465 *           Update the trailing submatrix
466 *
467             IF( KSTEP.EQ.1 ) THEN
468 *
469 *              1-by-1 pivot block D(k): column k now holds
470 *
471 *              W(k) = L(k)*D(k)
472 *
473 *              where L(k) is the k-th column of L
474 *
475                IF( K.LT.N ) THEN
476 *
477 *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
478 *
479 *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
480 *
481                   R1 = CONE / AP( KC )
482                   CALL ZSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
483      $                       AP( KC+N-K+1 ) )
484 *
485 *                 Store L(k) in column K
486 *
487                   CALL ZSCAL( N-K, R1, AP( KC+1 ), 1 )
488                END IF
489             ELSE
490 *
491 *              2-by-2 pivot block D(k): columns K and K+1 now hold
492 *
493 *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
494 *
495 *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
496 *              of L
497 *
498                IF( K.LT.N-1 ) THEN
499 *
500 *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
501 *
502 *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
503 *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
504 *
505 *                 where L(k) and L(k+1) are the k-th and (k+1)-th
506 *                 columns of L
507 *
508                   D21 = AP( K+1+( K-1 )*2*N-K ) / 2 )
509                   D11 = AP( K+1+K*2*N-K-1 ) / 2 ) / D21
510                   D22 = AP( K+( K-1 )*2*N-K ) / 2 ) / D21
511                   T = CONE / ( D11*D22-CONE )
512                   D21 = T / D21
513 *
514                   DO 100 J = K + 2, N
515                      WK = D21*( D11*AP( J+( K-1 )*2*N-K ) / 2 )-
516      $                    AP( J+K*2*N-K-1 ) / 2 ) )
517                      WKP1 = D21*( D22*AP( J+K*2*N-K-1 ) / 2 )-
518      $                      AP( J+( K-1 )*2*N-K ) / 2 ) )
519                      DO 90 I = J, N
520                         AP( I+( J-1 )*2*N-J ) / 2 ) = AP( I+( J-1 )*
521      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*2*N-K ) /
522      $                     2 )*WK - AP( I+K*2*N-K-1 ) / 2 )*WKP1
523    90                CONTINUE
524                      AP( J+( K-1 )*2*N-K ) / 2 ) = WK
525                      AP( J+K*2*N-K-1 ) / 2 ) = WKP1
526   100             CONTINUE
527                END IF
528             END IF
529          END IF
530 *
531 *        Store details of the interchanges in IPIV
532 *
533          IF( KSTEP.EQ.1 ) THEN
534             IPIV( K ) = KP
535          ELSE
536             IPIV( K ) = -KP
537             IPIV( K+1 ) = -KP
538          END IF
539 *
540 *        Increase K and return to the start of the main loop
541 *
542          K = K + KSTEP
543          KC = KNC + N - K + 2
544          GO TO 60
545 *
546       END IF
547 *
548   110 CONTINUE
549       RETURN
550 *
551 *     End of ZSPTRF
552 *
553       END