1       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  2 *
  3 *     -- LAPACK routine (version 3.2.2)                                 --
  4 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  5 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  6 *     -- June 2010                                                    --
  7 *
  8 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
  9 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 10 *
 11       IMPLICIT NONE
 12 *     ..
 13 *     .. Scalar Arguments ..
 14       INTEGER            INFO, LDA, N
 15       DOUBLE PRECISION   AMAX, SCOND
 16       CHARACTER          UPLO
 17 *     ..
 18 *     .. Array Arguments ..
 19       COMPLEX*16         A( LDA, * ), WORK( * )
 20       DOUBLE PRECISION   S( * )
 21 *     ..
 22 *
 23 *  Purpose
 24 *  =======
 25 *
 26 *  ZSYEQUB computes row and column scalings intended to equilibrate a
 27 *  symmetric matrix A and reduce its condition number
 28 *  (with respect to the two-norm).  S contains the scale factors,
 29 *  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 30 *  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 31 *  choice of S puts the condition number of B within a factor N of the
 32 *  smallest possible condition number over all possible diagonal
 33 *  scalings.
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  UPLO    (input) CHARACTER*1
 39 *          Specifies whether the details of the factorization are stored
 40 *          as an upper or lower triangular matrix.
 41 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 42 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrix A.  N >= 0.
 46 *
 47 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 48 *          The N-by-N symmetric matrix whose scaling
 49 *          factors are to be computed.  Only the diagonal elements of A
 50 *          are referenced.
 51 *
 52 *  LDA     (input) INTEGER
 53 *          The leading dimension of the array A.  LDA >= max(1,N).
 54 *
 55 *  S       (output) DOUBLE PRECISION array, dimension (N)
 56 *          If INFO = 0, S contains the scale factors for A.
 57 *
 58 *  SCOND   (output) DOUBLE PRECISION
 59 *          If INFO = 0, S contains the ratio of the smallest S(i) to
 60 *          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 61 *          large nor too small, it is not worth scaling by S.
 62 *
 63 *  AMAX    (output) DOUBLE PRECISION
 64 *          Absolute value of largest matrix element.  If AMAX is very
 65 *          close to overflow or very close to underflow, the matrix
 66 *          should be scaled.
 67 *
 68 *  WORK    (workspace) COMPLEX*16 array, dimension (3*N)
 69 *
 70 *  INFO    (output) INTEGER
 71 *          = 0:  successful exit
 72 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 73 *          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 74 *
 75 *  Further Details
 76 *  ======= =======
 77 *
 78 *  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
 79 *  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
 80 *  DOI 10.1023/B:NUMA.0000016606.32820.69
 81 *  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
 82 *
 83 *  =====================================================================
 84 *
 85 *     .. Parameters ..
 86       DOUBLE PRECISION   ONE, ZERO
 87       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
 88       INTEGER            MAX_ITER
 89       PARAMETER          ( MAX_ITER = 100 )
 90 *     ..
 91 *     .. Local Scalars ..
 92       INTEGER            I, J, ITER
 93       DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
 94      $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
 95       LOGICAL            UP
 96       COMPLEX*16         ZDUM
 97 *     ..
 98 *     .. External Functions ..
 99       DOUBLE PRECISION   DLAMCH
100       LOGICAL            LSAME
101       EXTERNAL           DLAMCH, LSAME
102 *     ..
103 *     .. External Subroutines ..
104       EXTERNAL           ZLASSQ
105 *     ..
106 *     .. Intrinsic Functions ..
107       INTRINSIC          ABSDBLEDIMAGINTLOGMAXMINSQRT
108 *     ..
109 *     .. Statement Functions ..
110       DOUBLE PRECISION   CABS1
111 *     ..
112 *     Statement Function Definitions
113       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
114 *     ..
115 *     .. Executable Statements ..
116 *
117 *     Test the input parameters.
118 *
119       INFO = 0
120       IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
121         INFO = -1
122       ELSE IF ( N .LT. 0 ) THEN
123         INFO = -2
124       ELSE IF ( LDA .LT. MAX1, N ) ) THEN
125         INFO = -4
126       END IF
127       IF ( INFO .NE. 0 ) THEN
128         CALL XERBLA( 'ZSYEQUB'-INFO )
129         RETURN
130       END IF
131 
132       UP = LSAME( UPLO, 'U' )
133       AMAX = ZERO
134 *
135 *     Quick return if possible.
136 *
137       IF ( N .EQ. 0 ) THEN
138         SCOND = ONE
139         RETURN
140       END IF
141 
142       DO I = 1, N
143         S( I ) = ZERO
144       END DO
145 
146       AMAX = ZERO
147       IF ( UP ) THEN
148          DO J = 1, N
149             DO I = 1, J-1
150                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
151                S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
152                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
153             END DO
154             S( J ) = MAX( S( J ), CABS1( A( J, J) ) )
155             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
156          END DO
157       ELSE
158          DO J = 1, N
159             S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
160             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
161             DO I = J+1, N
162                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
163                S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) )
164                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
165             END DO
166          END DO
167       END IF
168       DO J = 1, N
169          S( J ) = 1.0D+0 / S( J )
170       END DO
171 
172       TOL = ONE / SQRT2.0D0 * N )
173 
174       DO ITER = 1, MAX_ITER
175          SCALE = 0.0D+0
176          SUMSQ = 0.0D+0
177 *       beta = |A|s
178         DO I = 1, N
179            WORK( I ) = ZERO
180         END DO
181         IF ( UP ) THEN
182            DO J = 1, N
183               DO I = 1, J-1
184                  T = CABS1( A( I, J ) )
185                  WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
186                  WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
187               END DO
188               WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
189            END DO
190         ELSE
191            DO J = 1, N
192               WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
193               DO I = J+1, N
194                  T = CABS1( A( I, J ) )
195                  WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
196                  WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
197               END DO
198            END DO
199         END IF
200 
201 *       avg = s^T beta / n
202         AVG = 0.0D+0
203         DO I = 1, N
204           AVG = AVG + S( I )*WORK( I )
205         END DO
206         AVG = AVG / N
207 
208         STD = 0.0D+0
209         DO I = N+12*N
210            WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
211         END DO
212         CALL ZLASSQ( N, WORK( N+1 ), 1SCALE, SUMSQ )
213         STD = SCALE * SQRT( SUMSQ / N )
214 
215         IF ( STD .LT. TOL * AVG ) GOTO 999
216 
217         DO I = 1, N
218           T = CABS1( A( I, I ) )
219           SI = S( I )
220           C2 = ( N-1 ) * T
221           C1 = ( N-2 ) * ( WORK( I ) - T*SI )
222           C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
223           D = C1*C1 - 4*C0*C2
224 
225           IF ( D .LE. 0 ) THEN
226             INFO = -1
227             RETURN
228           END IF
229           SI = -2*C0 / ( C1 + SQRT( D ) )
230 
231           D = SI - S( I )
232           U = ZERO
233           IF ( UP ) THEN
234             DO J = 1, I
235               T = CABS1( A( J, I ) )
236               U = U + S( J )*T
237               WORK( J ) = WORK( J ) + D*T
238             END DO
239             DO J = I+1,N
240               T = CABS1( A( I, J ) )
241               U = U + S( J )*T
242               WORK( J ) = WORK( J ) + D*T
243             END DO
244           ELSE
245             DO J = 1, I
246               T = CABS1( A( I, J ) )
247               U = U + S( J )*T
248               WORK( J ) = WORK( J ) + D*T
249             END DO
250             DO J = I+1,N
251               T = CABS1( A( J, I ) )
252               U = U + S( J )*T
253               WORK( J ) = WORK( J ) + D*T
254             END DO
255           END IF
256           AVG = AVG + ( U + WORK( I ) ) * D / N
257           S( I ) = SI
258         END DO
259       END DO
260 
261  999  CONTINUE
262 
263       SMLNUM = DLAMCH( 'SAFEMIN' )
264       BIGNUM = ONE / SMLNUM
265       SMIN = BIGNUM
266       SMAX = ZERO
267       T = ONE / SQRT( AVG )
268       BASE = DLAMCH( 'B' )
269       U = ONE / LOG( BASE )
270       DO I = 1, N
271         S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
272         SMIN = MIN( SMIN, S( I ) )
273         SMAX = MAX( SMAX, S( I ) )
274       END DO
275       SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
276 *
277       END