1       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INCX, INCY, LDA, N
 11       COMPLEX*16         ALPHA, BETA
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZSYMV  performs the matrix-vector  operation
 21 *
 22 *     y := alpha*A*x + beta*y,
 23 *
 24 *  where alpha and beta are scalars, x and y are n element vectors and
 25 *  A is an n by n symmetric matrix.
 26 *
 27 *  Arguments
 28 *  ==========
 29 *
 30 *  UPLO     (input) CHARACTER*1
 31 *           On entry, UPLO specifies whether the upper or lower
 32 *           triangular part of the array A is to be referenced as
 33 *           follows:
 34 *
 35 *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 36 *                                  is to be referenced.
 37 *
 38 *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 39 *                                  is to be referenced.
 40 *
 41 *           Unchanged on exit.
 42 *
 43 *  N        (input) INTEGER
 44 *           On entry, N specifies the order of the matrix A.
 45 *           N must be at least zero.
 46 *           Unchanged on exit.
 47 *
 48 *  ALPHA    (input) COMPLEX*16
 49 *           On entry, ALPHA specifies the scalar alpha.
 50 *           Unchanged on exit.
 51 *
 52 *  A        (input) COMPLEX*16 array, dimension ( LDA, N )
 53 *           Before entry, with  UPLO = 'U' or 'u', the leading n by n
 54 *           upper triangular part of the array A must contain the upper
 55 *           triangular part of the symmetric matrix and the strictly
 56 *           lower triangular part of A is not referenced.
 57 *           Before entry, with UPLO = 'L' or 'l', the leading n by n
 58 *           lower triangular part of the array A must contain the lower
 59 *           triangular part of the symmetric matrix and the strictly
 60 *           upper triangular part of A is not referenced.
 61 *           Unchanged on exit.
 62 *
 63 *  LDA      (input) INTEGER
 64 *           On entry, LDA specifies the first dimension of A as declared
 65 *           in the calling (sub) program. LDA must be at least
 66 *           max( 1, N ).
 67 *           Unchanged on exit.
 68 *
 69 *  X        (input) COMPLEX*16 array, dimension at least
 70 *           ( 1 + ( N - 1 )*abs( INCX ) ).
 71 *           Before entry, the incremented array X must contain the N-
 72 *           element vector x.
 73 *           Unchanged on exit.
 74 *
 75 *  INCX     (input) INTEGER
 76 *           On entry, INCX specifies the increment for the elements of
 77 *           X. INCX must not be zero.
 78 *           Unchanged on exit.
 79 *
 80 *  BETA     (input) COMPLEX*16
 81 *           On entry, BETA specifies the scalar beta. When BETA is
 82 *           supplied as zero then Y need not be set on input.
 83 *           Unchanged on exit.
 84 *
 85 *  Y        (input/output) COMPLEX*16 array, dimension at least
 86 *           ( 1 + ( N - 1 )*abs( INCY ) ).
 87 *           Before entry, the incremented array Y must contain the n
 88 *           element vector y. On exit, Y is overwritten by the updated
 89 *           vector y.
 90 *
 91 *  INCY     (input) INTEGER
 92 *           On entry, INCY specifies the increment for the elements of
 93 *           Y. INCY must not be zero.
 94 *           Unchanged on exit.
 95 *
 96 * =====================================================================
 97 *
 98 *     .. Parameters ..
 99       COMPLEX*16         ONE
100       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
101       COMPLEX*16         ZERO
102       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ) )
103 *     ..
104 *     .. Local Scalars ..
105       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
106       COMPLEX*16         TEMP1, TEMP2
107 *     ..
108 *     .. External Functions ..
109       LOGICAL            LSAME
110       EXTERNAL           LSAME
111 *     ..
112 *     .. External Subroutines ..
113       EXTERNAL           XERBLA
114 *     ..
115 *     .. Intrinsic Functions ..
116       INTRINSIC          MAX
117 *     ..
118 *     .. Executable Statements ..
119 *
120 *     Test the input parameters.
121 *
122       INFO = 0
123       IF.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
124          INFO = 1
125       ELSE IF( N.LT.0 ) THEN
126          INFO = 2
127       ELSE IF( LDA.LT.MAX1, N ) ) THEN
128          INFO = 5
129       ELSE IF( INCX.EQ.0 ) THEN
130          INFO = 7
131       ELSE IF( INCY.EQ.0 ) THEN
132          INFO = 10
133       END IF
134       IF( INFO.NE.0 ) THEN
135          CALL XERBLA( 'ZSYMV ', INFO )
136          RETURN
137       END IF
138 *
139 *     Quick return if possible.
140 *
141       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
142      $   RETURN
143 *
144 *     Set up the start points in  X  and  Y.
145 *
146       IF( INCX.GT.0 ) THEN
147          KX = 1
148       ELSE
149          KX = 1 - ( N-1 )*INCX
150       END IF
151       IF( INCY.GT.0 ) THEN
152          KY = 1
153       ELSE
154          KY = 1 - ( N-1 )*INCY
155       END IF
156 *
157 *     Start the operations. In this version the elements of A are
158 *     accessed sequentially with one pass through the triangular part
159 *     of A.
160 *
161 *     First form  y := beta*y.
162 *
163       IF( BETA.NE.ONE ) THEN
164          IF( INCY.EQ.1 ) THEN
165             IF( BETA.EQ.ZERO ) THEN
166                DO 10 I = 1, N
167                   Y( I ) = ZERO
168    10          CONTINUE
169             ELSE
170                DO 20 I = 1, N
171                   Y( I ) = BETA*Y( I )
172    20          CONTINUE
173             END IF
174          ELSE
175             IY = KY
176             IF( BETA.EQ.ZERO ) THEN
177                DO 30 I = 1, N
178                   Y( IY ) = ZERO
179                   IY = IY + INCY
180    30          CONTINUE
181             ELSE
182                DO 40 I = 1, N
183                   Y( IY ) = BETA*Y( IY )
184                   IY = IY + INCY
185    40          CONTINUE
186             END IF
187          END IF
188       END IF
189       IF( ALPHA.EQ.ZERO )
190      $   RETURN
191       IF( LSAME( UPLO, 'U' ) ) THEN
192 *
193 *        Form  y  when A is stored in upper triangle.
194 *
195          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
196             DO 60 J = 1, N
197                TEMP1 = ALPHA*X( J )
198                TEMP2 = ZERO
199                DO 50 I = 1, J - 1
200                   Y( I ) = Y( I ) + TEMP1*A( I, J )
201                   TEMP2 = TEMP2 + A( I, J )*X( I )
202    50          CONTINUE
203                Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
204    60       CONTINUE
205          ELSE
206             JX = KX
207             JY = KY
208             DO 80 J = 1, N
209                TEMP1 = ALPHA*X( JX )
210                TEMP2 = ZERO
211                IX = KX
212                IY = KY
213                DO 70 I = 1, J - 1
214                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
215                   TEMP2 = TEMP2 + A( I, J )*X( IX )
216                   IX = IX + INCX
217                   IY = IY + INCY
218    70          CONTINUE
219                Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
220                JX = JX + INCX
221                JY = JY + INCY
222    80       CONTINUE
223          END IF
224       ELSE
225 *
226 *        Form  y  when A is stored in lower triangle.
227 *
228          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
229             DO 100 J = 1, N
230                TEMP1 = ALPHA*X( J )
231                TEMP2 = ZERO
232                Y( J ) = Y( J ) + TEMP1*A( J, J )
233                DO 90 I = J + 1, N
234                   Y( I ) = Y( I ) + TEMP1*A( I, J )
235                   TEMP2 = TEMP2 + A( I, J )*X( I )
236    90          CONTINUE
237                Y( J ) = Y( J ) + ALPHA*TEMP2
238   100       CONTINUE
239          ELSE
240             JX = KX
241             JY = KY
242             DO 120 J = 1, N
243                TEMP1 = ALPHA*X( JX )
244                TEMP2 = ZERO
245                Y( JY ) = Y( JY ) + TEMP1*A( J, J )
246                IX = JX
247                IY = JY
248                DO 110 I = J + 1, N
249                   IX = IX + INCX
250                   IY = IY + INCY
251                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
252                   TEMP2 = TEMP2 + A( I, J )*X( IX )
253   110          CONTINUE
254                Y( JY ) = Y( JY ) + ALPHA*TEMP2
255                JX = JX + INCX
256                JY = JY + INCY
257   120       CONTINUE
258          END IF
259       END IF
260 *
261       RETURN
262 *
263 *     End of ZSYMV
264 *
265       END