1       SUBROUTINE ZSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       COMPLEX*16         A( LDA, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZSYTRI computes the inverse of a complex symmetric indefinite matrix
 21 *  A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 22 *  ZSYTRF.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          Specifies whether the details of the factorization are stored
 29 *          as an upper or lower triangular matrix.
 30 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 31 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 37 *          On entry, the block diagonal matrix D and the multipliers
 38 *          used to obtain the factor U or L as computed by ZSYTRF.
 39 *
 40 *          On exit, if INFO = 0, the (symmetric) inverse of the original
 41 *          matrix.  If UPLO = 'U', the upper triangular part of the
 42 *          inverse is formed and the part of A below the diagonal is not
 43 *          referenced; if UPLO = 'L' the lower triangular part of the
 44 *          inverse is formed and the part of A above the diagonal is
 45 *          not referenced.
 46 *
 47 *  LDA     (input) INTEGER
 48 *          The leading dimension of the array A.  LDA >= max(1,N).
 49 *
 50 *  IPIV    (input) INTEGER array, dimension (N)
 51 *          Details of the interchanges and the block structure of D
 52 *          as determined by ZSYTRF.
 53 *
 54 *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
 55 *
 56 *  INFO    (output) INTEGER
 57 *          = 0: successful exit
 58 *          < 0: if INFO = -i, the i-th argument had an illegal value
 59 *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 60 *               inverse could not be computed.
 61 *
 62 *  =====================================================================
 63 *
 64 *     .. Parameters ..
 65       COMPLEX*16         ONE, ZERO
 66       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ),
 67      $                   ZERO = ( 0.0D+00.0D+0 ) )
 68 *     ..
 69 *     .. Local Scalars ..
 70       LOGICAL            UPPER
 71       INTEGER            K, KP, KSTEP
 72       COMPLEX*16         AK, AKKP1, AKP1, D, T, TEMP
 73 *     ..
 74 *     .. External Functions ..
 75       LOGICAL            LSAME
 76       COMPLEX*16         ZDOTU
 77       EXTERNAL           LSAME, ZDOTU
 78 *     ..
 79 *     .. External Subroutines ..
 80       EXTERNAL           XERBLA, ZCOPY, ZSWAP, ZSYMV
 81 *     ..
 82 *     .. Intrinsic Functions ..
 83       INTRINSIC          ABSMAX
 84 *     ..
 85 *     .. Executable Statements ..
 86 *
 87 *     Test the input parameters.
 88 *
 89       INFO = 0
 90       UPPER = LSAME( UPLO, 'U' )
 91       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 92          INFO = -1
 93       ELSE IF( N.LT.0 ) THEN
 94          INFO = -2
 95       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 96          INFO = -4
 97       END IF
 98       IF( INFO.NE.0 ) THEN
 99          CALL XERBLA( 'ZSYTRI'-INFO )
100          RETURN
101       END IF
102 *
103 *     Quick return if possible
104 *
105       IF( N.EQ.0 )
106      $   RETURN
107 *
108 *     Check that the diagonal matrix D is nonsingular.
109 *
110       IF( UPPER ) THEN
111 *
112 *        Upper triangular storage: examine D from bottom to top
113 *
114          DO 10 INFO = N, 1-1
115             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
116      $         RETURN
117    10    CONTINUE
118       ELSE
119 *
120 *        Lower triangular storage: examine D from top to bottom.
121 *
122          DO 20 INFO = 1, N
123             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
124      $         RETURN
125    20    CONTINUE
126       END IF
127       INFO = 0
128 *
129       IF( UPPER ) THEN
130 *
131 *        Compute inv(A) from the factorization A = U*D*U**T.
132 *
133 *        K is the main loop index, increasing from 1 to N in steps of
134 *        1 or 2, depending on the size of the diagonal blocks.
135 *
136          K = 1
137    30    CONTINUE
138 *
139 *        If K > N, exit from loop.
140 *
141          IF( K.GT.N )
142      $      GO TO 40
143 *
144          IF( IPIV( K ).GT.0 ) THEN
145 *
146 *           1 x 1 diagonal block
147 *
148 *           Invert the diagonal block.
149 *
150             A( K, K ) = ONE / A( K, K )
151 *
152 *           Compute column K of the inverse.
153 *
154             IF( K.GT.1 ) THEN
155                CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
156                CALL ZSYMV( UPLO, K-1-ONE, A, LDA, WORK, 1, ZERO,
157      $                     A( 1, K ), 1 )
158                A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
159      $                     1 )
160             END IF
161             KSTEP = 1
162          ELSE
163 *
164 *           2 x 2 diagonal block
165 *
166 *           Invert the diagonal block.
167 *
168             T = A( K, K+1 )
169             AK = A( K, K ) / T
170             AKP1 = A( K+1, K+1 ) / T
171             AKKP1 = A( K, K+1 ) / T
172             D = T*( AK*AKP1-ONE )
173             A( K, K ) = AKP1 / D
174             A( K+1, K+1 ) = AK / D
175             A( K, K+1 ) = -AKKP1 / D
176 *
177 *           Compute columns K and K+1 of the inverse.
178 *
179             IF( K.GT.1 ) THEN
180                CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
181                CALL ZSYMV( UPLO, K-1-ONE, A, LDA, WORK, 1, ZERO,
182      $                     A( 1, K ), 1 )
183                A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
184      $                     1 )
185                A( K, K+1 ) = A( K, K+1 ) -
186      $                       ZDOTU( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
187                CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
188                CALL ZSYMV( UPLO, K-1-ONE, A, LDA, WORK, 1, ZERO,
189      $                     A( 1, K+1 ), 1 )
190                A( K+1, K+1 ) = A( K+1, K+1 ) -
191      $                         ZDOTU( K-1, WORK, 1, A( 1, K+1 ), 1 )
192             END IF
193             KSTEP = 2
194          END IF
195 *
196          KP = ABS( IPIV( K ) )
197          IF( KP.NE.K ) THEN
198 *
199 *           Interchange rows and columns K and KP in the leading
200 *           submatrix A(1:k+1,1:k+1)
201 *
202             CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
203             CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
204             TEMP = A( K, K )
205             A( K, K ) = A( KP, KP )
206             A( KP, KP ) = TEMP
207             IF( KSTEP.EQ.2 ) THEN
208                TEMP = A( K, K+1 )
209                A( K, K+1 ) = A( KP, K+1 )
210                A( KP, K+1 ) = TEMP
211             END IF
212          END IF
213 *
214          K = K + KSTEP
215          GO TO 30
216    40    CONTINUE
217 *
218       ELSE
219 *
220 *        Compute inv(A) from the factorization A = L*D*L**T.
221 *
222 *        K is the main loop index, increasing from 1 to N in steps of
223 *        1 or 2, depending on the size of the diagonal blocks.
224 *
225          K = N
226    50    CONTINUE
227 *
228 *        If K < 1, exit from loop.
229 *
230          IF( K.LT.1 )
231      $      GO TO 60
232 *
233          IF( IPIV( K ).GT.0 ) THEN
234 *
235 *           1 x 1 diagonal block
236 *
237 *           Invert the diagonal block.
238 *
239             A( K, K ) = ONE / A( K, K )
240 *
241 *           Compute column K of the inverse.
242 *
243             IF( K.LT.N ) THEN
244                CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
245                CALL ZSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
246      $                     ZERO, A( K+1, K ), 1 )
247                A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
248      $                     1 )
249             END IF
250             KSTEP = 1
251          ELSE
252 *
253 *           2 x 2 diagonal block
254 *
255 *           Invert the diagonal block.
256 *
257             T = A( K, K-1 )
258             AK = A( K-1, K-1 ) / T
259             AKP1 = A( K, K ) / T
260             AKKP1 = A( K, K-1 ) / T
261             D = T*( AK*AKP1-ONE )
262             A( K-1, K-1 ) = AKP1 / D
263             A( K, K ) = AK / D
264             A( K, K-1 ) = -AKKP1 / D
265 *
266 *           Compute columns K-1 and K of the inverse.
267 *
268             IF( K.LT.N ) THEN
269                CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
270                CALL ZSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
271      $                     ZERO, A( K+1, K ), 1 )
272                A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
273      $                     1 )
274                A( K, K-1 ) = A( K, K-1 ) -
275      $                       ZDOTU( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
276      $                       1 )
277                CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
278                CALL ZSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
279      $                     ZERO, A( K+1, K-1 ), 1 )
280                A( K-1, K-1 ) = A( K-1, K-1 ) -
281      $                         ZDOTU( N-K, WORK, 1, A( K+1, K-1 ), 1 )
282             END IF
283             KSTEP = 2
284          END IF
285 *
286          KP = ABS( IPIV( K ) )
287          IF( KP.NE.K ) THEN
288 *
289 *           Interchange rows and columns K and KP in the trailing
290 *           submatrix A(k-1:n,k-1:n)
291 *
292             IF( KP.LT.N )
293      $         CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
294             CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
295             TEMP = A( K, K )
296             A( K, K ) = A( KP, KP )
297             A( KP, KP ) = TEMP
298             IF( KSTEP.EQ.2 ) THEN
299                TEMP = A( K, K-1 )
300                A( K, K-1 ) = A( KP, K-1 )
301                A( KP, K-1 ) = TEMP
302             END IF
303          END IF
304 *
305          K = K - KSTEP
306          GO TO 50
307    60    CONTINUE
308       END IF
309 *
310       RETURN
311 *
312 *     End of ZSYTRI
313 *
314       END