1       SUBROUTINE ZSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *  -- Written by Julie Langou of the Univ. of TN    --
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          UPLO
 12       INTEGER            INFO, LDA, N, NB
 13 *     ..
 14 *     .. Array Arguments ..
 15       INTEGER            IPIV( * )
 16       DOUBLE COMPLEX     A( LDA, * ), WORK( N+NB+1,* )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZSYTRI2X computes the inverse of a complex symmetric indefinite matrix
 23 *  A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 24 *  ZSYTRF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  UPLO    (input) CHARACTER*1
 30 *          Specifies whether the details of the factorization are stored
 31 *          as an upper or lower triangular matrix.
 32 *          = 'U':  Upper triangular, form is A = U*D*U**T;
 33 *          = 'L':  Lower triangular, form is A = L*D*L**T.
 34 *
 35 *  N       (input) INTEGER
 36 *          The order of the matrix A.  N >= 0.
 37 *
 38 *  A       (input/output) DOUBLE COMPLEX array, dimension (LDA,N)
 39 *          On entry, the NNB diagonal matrix D and the multipliers
 40 *          used to obtain the factor U or L as computed by ZSYTRF.
 41 *
 42 *          On exit, if INFO = 0, the (symmetric) inverse of the original
 43 *          matrix.  If UPLO = 'U', the upper triangular part of the
 44 *          inverse is formed and the part of A below the diagonal is not
 45 *          referenced; if UPLO = 'L' the lower triangular part of the
 46 *          inverse is formed and the part of A above the diagonal is
 47 *          not referenced.
 48 *
 49 *  LDA     (input) INTEGER
 50 *          The leading dimension of the array A.  LDA >= max(1,N).
 51 *
 52 *  IPIV    (input) INTEGER array, dimension (N)
 53 *          Details of the interchanges and the NNB structure of D
 54 *          as determined by ZSYTRF.
 55 *
 56 *  WORK    (workspace) DOUBLE COMPLEX array, dimension (N+NNB+1,NNB+3)
 57 *
 58 *  NB      (input) INTEGER
 59 *          Block size
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0: successful exit
 63 *          < 0: if INFO = -i, the i-th argument had an illegal value
 64 *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 65 *               inverse could not be computed.
 66 *
 67 *  =====================================================================
 68 *
 69 *     .. Parameters ..
 70       DOUBLE COMPLEX     ONE, ZERO
 71       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ),
 72      $                   ZERO = ( 0.0D+00.0D+0 ) )
 73 *     ..
 74 *     .. Local Scalars ..
 75       LOGICAL            UPPER
 76       INTEGER            I, IINFO, IP, K, CUT, NNB
 77       INTEGER            COUNT
 78       INTEGER            J, U11, INVD
 79 
 80       DOUBLE COMPLEX     AK, AKKP1, AKP1, D, T
 81       DOUBLE COMPLEX     U01_I_J, U01_IP1_J
 82       DOUBLE COMPLEX     U11_I_J, U11_IP1_J
 83 *     ..
 84 *     .. External Functions ..
 85       LOGICAL            LSAME
 86       EXTERNAL           LSAME
 87 *     ..
 88 *     .. External Subroutines ..
 89       EXTERNAL           ZSYCONV, XERBLA, ZTRTRI
 90       EXTERNAL           ZGEMM, ZTRMM, ZSYSWAPR
 91 *     ..
 92 *     .. Intrinsic Functions ..
 93       INTRINSIC          MAX
 94 *     ..
 95 *     .. Executable Statements ..
 96 *
 97 *     Test the input parameters.
 98 *
 99       INFO = 0
100       UPPER = LSAME( UPLO, 'U' )
101       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
102          INFO = -1
103       ELSE IF( N.LT.0 ) THEN
104          INFO = -2
105       ELSE IF( LDA.LT.MAX1, N ) ) THEN
106          INFO = -4
107       END IF
108 *
109 *     Quick return if possible
110 *
111 *
112       IF( INFO.NE.0 ) THEN
113          CALL XERBLA( 'ZSYTRI2X'-INFO )
114          RETURN
115       END IF
116       IF( N.EQ.0 )
117      $   RETURN
118 *
119 *     Convert A
120 *     Workspace got Non-diag elements of D
121 *
122       CALL ZSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
123 *
124 *     Check that the diagonal matrix D is nonsingular.
125 *
126       IF( UPPER ) THEN
127 *
128 *        Upper triangular storage: examine D from bottom to top
129 *
130          DO INFO = N, 1-1
131             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
132      $         RETURN
133          END DO
134       ELSE
135 *
136 *        Lower triangular storage: examine D from top to bottom.
137 *
138          DO INFO = 1, N
139             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
140      $         RETURN
141          END DO
142       END IF
143       INFO = 0
144 *
145 *  Splitting Workspace
146 *     U01 is a block (N,NB+1) 
147 *     The first element of U01 is in WORK(1,1)
148 *     U11 is a block (NB+1,NB+1)
149 *     The first element of U11 is in WORK(N+1,1)
150       U11 = N
151 *     INVD is a block (N,2)
152 *     The first element of INVD is in WORK(1,INVD)
153       INVD = NB+2
154 
155       IF( UPPER ) THEN
156 *
157 *        invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
158 *
159         CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
160 *
161 *       inv(D) and inv(D)*inv(U)
162 
163         K=1
164         DO WHILE ( K .LE. N )
165          IF( IPIV( K ).GT.0 ) THEN
166 *           1 x 1 diagonal NNB
167              WORK(K,INVD) = 1/  A( K, K )
168              WORK(K,INVD+1= 0
169             K=K+1
170          ELSE
171 *           2 x 2 diagonal NNB
172              T = WORK(K+1,1)
173              AK = A( K, K ) / T
174              AKP1 = A( K+1, K+1 ) / T
175              AKKP1 = WORK(K+1,1)  / T
176              D = T*( AK*AKP1-ONE )
177              WORK(K,INVD) = AKP1 / D
178              WORK(K+1,INVD+1= AK / D
179              WORK(K,INVD+1= -AKKP1 / D  
180              WORK(K+1,INVD) = -AKKP1 / D  
181             K=K+2
182          END IF
183         END DO
184 *
185 *       inv(U**T) = (inv(U))**T
186 *
187 *       inv(U**T)*inv(D)*inv(U)
188 *
189         CUT=N
190         DO WHILE (CUT .GT. 0)
191            NNB=NB
192            IF (CUT .LE. NNB) THEN
193               NNB=CUT
194            ELSE
195               COUNT = 0
196 *             count negative elements, 
197               DO I=CUT+1-NNB,CUT
198                   IF (IPIV(I) .LT. 0COUNT=COUNT+1
199               END DO
200 *             need a even number for a clear cut
201               IF (MOD(COUNT,2.EQ. 1) NNB=NNB+1
202            END IF
203 
204            CUT=CUT-NNB
205 *
206 *          U01 Block 
207 *
208            DO I=1,CUT
209              DO J=1,NNB
210               WORK(I,J)=A(I,CUT+J)
211              END DO
212            END DO
213 *
214 *          U11 Block
215 *
216            DO I=1,NNB
217              WORK(U11+I,I)=ONE
218              DO J=1,I-1
219                 WORK(U11+I,J)=ZERO
220              END DO
221              DO J=I+1,NNB
222                 WORK(U11+I,J)=A(CUT+I,CUT+J)
223              END DO
224            END DO
225 *
226 *          invD*U01
227 *
228            I=1
229            DO WHILE (I .LE. CUT)
230              IF (IPIV(I) > 0THEN
231                 DO J=1,NNB
232                     WORK(I,J)=WORK(I,INVD)*WORK(I,J)
233                 END DO
234                 I=I+1
235              ELSE
236                 DO J=1,NNB
237                    U01_I_J = WORK(I,J)
238                    U01_IP1_J = WORK(I+1,J)
239                    WORK(I,J)=WORK(I,INVD)*U01_I_J+
240      $                      WORK(I,INVD+1)*U01_IP1_J
241                    WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
242      $                      WORK(I+1,INVD+1)*U01_IP1_J
243                 END DO
244                 I=I+2
245              END IF
246            END DO
247 *
248 *        invD1*U11
249 *
250            I=1
251            DO WHILE (I .LE. NNB)
252              IF (IPIV(CUT+I) > 0THEN
253                 DO J=I,NNB
254                     WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
255                 END DO
256                 I=I+1
257              ELSE
258                 DO J=I,NNB
259                    U11_I_J = WORK(U11+I,J)
260                    U11_IP1_J = WORK(U11+I+1,J)
261                 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
262      $                      WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
263                 WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
264      $                      WORK(CUT+I+1,INVD+1)*U11_IP1_J
265                 END DO
266                 I=I+2
267              END IF
268            END DO
269 *    
270 *       U11**T*invD1*U11->U11
271 *
272         CALL ZTRMM('L','U','T','U',NNB, NNB,
273      $             ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
274 *
275          DO I=1,NNB
276             DO J=I,NNB
277               A(CUT+I,CUT+J)=WORK(U11+I,J)
278             END DO
279          END DO         
280 *
281 *          U01**T*invD*U01->A(CUT+I,CUT+J)
282 *
283          CALL ZGEMM('T','N',NNB,NNB,CUT,ONE,A(1,CUT+1),LDA,
284      $              WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
285 *
286 *        U11 =  U11**T*invD1*U11 + U01**T*invD*U01
287 *
288          DO I=1,NNB
289             DO J=I,NNB
290               A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
291             END DO
292          END DO
293 *
294 *        U01 =  U00**T*invD0*U01
295 *
296          CALL ZTRMM('L',UPLO,'T','U',CUT, NNB,
297      $             ONE,A,LDA,WORK,N+NB+1)
298 
299 *
300 *        Update U01
301 *
302          DO I=1,CUT
303            DO J=1,NNB
304             A(I,CUT+J)=WORK(I,J)
305            END DO
306          END DO
307 *
308 *      Next Block
309 *
310        END DO
311 *
312 *        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
313 *  
314             I=1
315             DO WHILE ( I .LE. N )
316                IF( IPIV(I) .GT. 0 ) THEN
317                   IP=IPIV(I)
318                  IF (I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP )
319                  IF (I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
320                ELSE
321                  IP=-IPIV(I)
322                  I=I+1
323                  IF ( (I-1.LT. IP) 
324      $                  CALL ZSYSWAPR( UPLO, N, A, LDA, I-1 ,IP )
325                  IF ( (I-1.GT. IP) 
326      $                  CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I-1 )
327               ENDIF
328                I=I+1
329             END DO
330       ELSE
331 *
332 *        LOWER...
333 *
334 *        invA = P * inv(U**T)*inv(D)*inv(U)*P**T.
335 *
336          CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
337 *
338 *       inv(D) and inv(D)*inv(U)
339 
340         K=N
341         DO WHILE ( K .GE. 1 )
342          IF( IPIV( K ).GT.0 ) THEN
343 *           1 x 1 diagonal NNB
344              WORK(K,INVD) = 1/  A( K, K )
345              WORK(K,INVD+1= 0
346             K=K-1
347          ELSE
348 *           2 x 2 diagonal NNB
349              T = WORK(K-1,1)
350              AK = A( K-1, K-1 ) / T
351              AKP1 = A( K, K ) / T
352              AKKP1 = WORK(K-1,1/ T
353              D = T*( AK*AKP1-ONE )
354              WORK(K-1,INVD) = AKP1 / D
355              WORK(K,INVD) = AK / D
356              WORK(K,INVD+1= -AKKP1 / D  
357              WORK(K-1,INVD+1= -AKKP1 / D  
358             K=K-2
359          END IF
360         END DO
361 *
362 *       inv(U**T) = (inv(U))**T
363 *
364 *       inv(U**T)*inv(D)*inv(U)
365 *
366         CUT=0
367         DO WHILE (CUT .LT. N)
368            NNB=NB
369            IF (CUT + NNB .GE. N) THEN
370               NNB=N-CUT
371            ELSE
372               COUNT = 0
373 *             count negative elements, 
374               DO I=CUT+1,CUT+NNB
375                   IF (IPIV(I) .LT. 0COUNT=COUNT+1
376               END DO
377 *             need a even number for a clear cut
378               IF (MOD(COUNT,2.EQ. 1) NNB=NNB+1
379            END IF
380 *      L21 Block
381            DO I=1,N-CUT-NNB
382              DO J=1,NNB
383               WORK(I,J)=A(CUT+NNB+I,CUT+J)
384              END DO
385            END DO
386 *     L11 Block
387            DO I=1,NNB
388              WORK(U11+I,I)=ONE
389              DO J=I+1,NNB
390                 WORK(U11+I,J)=ZERO
391              END DO
392              DO J=1,I-1
393                 WORK(U11+I,J)=A(CUT+I,CUT+J)
394              END DO
395            END DO
396 *
397 *          invD*L21
398 *
399            I=N-CUT-NNB
400            DO WHILE (I .GE. 1)
401              IF (IPIV(CUT+NNB+I) > 0THEN
402                 DO J=1,NNB
403                     WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
404                 END DO
405                 I=I-1
406              ELSE
407                 DO J=1,NNB
408                    U01_I_J = WORK(I,J)
409                    U01_IP1_J = WORK(I-1,J)
410                    WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
411      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
412                    WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
413      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
414                 END DO
415                 I=I-2
416              END IF
417            END DO
418 *
419 *        invD1*L11
420 *
421            I=NNB
422            DO WHILE (I .GE. 1)
423              IF (IPIV(CUT+I) > 0THEN
424                 DO J=1,NNB
425                     WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
426                 END DO
427                 I=I-1
428              ELSE
429                 DO J=1,NNB
430                    U11_I_J = WORK(U11+I,J)
431                    U11_IP1_J = WORK(U11+I-1,J)
432                 WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
433      $                      WORK(CUT+I,INVD+1)*U11_IP1_J
434                 WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
435      $                      WORK(CUT+I-1,INVD)*U11_IP1_J
436                 END DO
437                 I=I-2
438              END IF
439            END DO
440 *    
441 *       L11**T*invD1*L11->L11
442 *
443         CALL ZTRMM('L',UPLO,'T','U',NNB, NNB,
444      $             ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
445 *
446          DO I=1,NNB
447             DO J=1,I
448               A(CUT+I,CUT+J)=WORK(U11+I,J)
449             END DO
450          END DO
451 *
452 
453         IF ( (CUT+NNB) .LT. N ) THEN
454 *
455 *          L21**T*invD2*L21->A(CUT+I,CUT+J)
456 *
457          CALL ZGEMM('T','N',NNB,NNB,N-NNB-CUT,ONE,A(CUT+NNB+1,CUT+1)
458      $             ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1)
459        
460 *
461 *        L11 =  L11**T*invD1*L11 + U01**T*invD*U01
462 *
463          DO I=1,NNB
464             DO J=1,I
465               A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
466             END DO
467          END DO
468 *
469 *        U01 =  L22**T*invD2*L21
470 *
471          CALL ZTRMM('L',UPLO,'T','U', N-NNB-CUT, NNB,
472      $             ONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
473 
474 *      Update L21
475          DO I=1,N-CUT-NNB
476            DO J=1,NNB
477               A(CUT+NNB+I,CUT+J)=WORK(I,J)
478            END DO
479          END DO
480        ELSE
481 *
482 *        L11 =  L11**T*invD1*L11
483 *
484          DO I=1,NNB
485             DO J=1,I
486               A(CUT+I,CUT+J)=WORK(U11+I,J)
487             END DO
488          END DO
489        END IF
490 *
491 *      Next Block
492 *
493            CUT=CUT+NNB
494        END DO
495 *
496 *        Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T
497 
498             I=N
499             DO WHILE ( I .GE. 1 )
500                IF( IPIV(I) .GT. 0 ) THEN
501                   IP=IPIV(I)
502                  IF (I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP  )
503                  IF (I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
504                ELSE
505                  IP=-IPIV(I)
506                  IF ( I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP )
507                  IF ( I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
508                  I=I-1
509                ENDIF
510                I=I-1
511             END DO
512       END IF
513 *
514       RETURN
515 *
516 *     End of ZSYTRI2X
517 *
518       END
519