1       SUBROUTINE ZTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  2      $                   LDB, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, TRANS, UPLO
 11       INTEGER            INFO, KD, LDAB, LDB, N, NRHS
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         AB( LDAB, * ), B( LDB, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZTBTRS solves a triangular system of the form
 21 *
 22 *     A * X = B,  A**T * X = B,  or  A**H * X = B,
 23 *
 24 *  where A is a triangular band matrix of order N, and B is an
 25 *  N-by-NRHS matrix.  A check is made to verify that A is nonsingular.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  UPLO    (input) CHARACTER*1
 31 *          = 'U':  A is upper triangular;
 32 *          = 'L':  A is lower triangular.
 33 *
 34 *  TRANS   (input) CHARACTER*1
 35 *          Specifies the form of the system of equations:
 36 *          = 'N':  A * X = B     (No transpose)
 37 *          = 'T':  A**T * X = B  (Transpose)
 38 *          = 'C':  A**H * X = B  (Conjugate transpose)
 39 *
 40 *  DIAG    (input) CHARACTER*1
 41 *          = 'N':  A is non-unit triangular;
 42 *          = 'U':  A is unit triangular.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrix A.  N >= 0.
 46 *
 47 *  KD      (input) INTEGER
 48 *          The number of superdiagonals or subdiagonals of the
 49 *          triangular band matrix A.  KD >= 0.
 50 *
 51 *  NRHS    (input) INTEGER
 52 *          The number of right hand sides, i.e., the number of columns
 53 *          of the matrix B.  NRHS >= 0.
 54 *
 55 *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 56 *          The upper or lower triangular band matrix A, stored in the
 57 *          first kd+1 rows of AB.  The j-th column of A is stored
 58 *          in the j-th column of the array AB as follows:
 59 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 60 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 61 *          If DIAG = 'U', the diagonal elements of A are not referenced
 62 *          and are assumed to be 1.
 63 *
 64 *  LDAB    (input) INTEGER
 65 *          The leading dimension of the array AB.  LDAB >= KD+1.
 66 *
 67 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 68 *          On entry, the right hand side matrix B.
 69 *          On exit, if INFO = 0, the solution matrix X.
 70 *
 71 *  LDB     (input) INTEGER
 72 *          The leading dimension of the array B.  LDB >= max(1,N).
 73 *
 74 *  INFO    (output) INTEGER
 75 *          = 0:  successful exit
 76 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 77 *          > 0:  if INFO = i, the i-th diagonal element of A is zero,
 78 *                indicating that the matrix is singular and the
 79 *                solutions X have not been computed.
 80 *
 81 *  =====================================================================
 82 *
 83 *     .. Parameters ..
 84       COMPLEX*16         ZERO
 85       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ) )
 86 *     ..
 87 *     .. Local Scalars ..
 88       LOGICAL            NOUNIT, UPPER
 89       INTEGER            J
 90 *     ..
 91 *     .. External Functions ..
 92       LOGICAL            LSAME
 93       EXTERNAL           LSAME
 94 *     ..
 95 *     .. External Subroutines ..
 96       EXTERNAL           XERBLA, ZTBSV
 97 *     ..
 98 *     .. Intrinsic Functions ..
 99       INTRINSIC          MAX
100 *     ..
101 *     .. Executable Statements ..
102 *
103 *     Test the input parameters.
104 *
105       INFO = 0
106       NOUNIT = LSAME( DIAG, 'N' )
107       UPPER = LSAME( UPLO, 'U' )
108       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
109          INFO = -1
110       ELSE IF.NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
111      $         LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
112          INFO = -2
113       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
114          INFO = -3
115       ELSE IF( N.LT.0 ) THEN
116          INFO = -4
117       ELSE IF( KD.LT.0 ) THEN
118          INFO = -5
119       ELSE IF( NRHS.LT.0 ) THEN
120          INFO = -6
121       ELSE IF( LDAB.LT.KD+1 ) THEN
122          INFO = -8
123       ELSE IF( LDB.LT.MAX1, N ) ) THEN
124          INFO = -10
125       END IF
126       IF( INFO.NE.0 ) THEN
127          CALL XERBLA( 'ZTBTRS'-INFO )
128          RETURN
129       END IF
130 *
131 *     Quick return if possible
132 *
133       IF( N.EQ.0 )
134      $   RETURN
135 *
136 *     Check for singularity.
137 *
138       IF( NOUNIT ) THEN
139          IF( UPPER ) THEN
140             DO 10 INFO = 1, N
141                IF( AB( KD+1, INFO ).EQ.ZERO )
142      $            RETURN
143    10       CONTINUE
144          ELSE
145             DO 20 INFO = 1, N
146                IF( AB( 1, INFO ).EQ.ZERO )
147      $            RETURN
148    20       CONTINUE
149          END IF
150       END IF
151       INFO = 0
152 *
153 *     Solve A * X = B,  A**T * X = B,  or  A**H * X = B.
154 *
155       DO 30 J = 1, NRHS
156          CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, B( 1, J ), 1 )
157    30 CONTINUE
158 *
159       RETURN
160 *
161 *     End of ZTBTRS
162 *
163       END