1       SUBROUTINE ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
  2      $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
  3      $                   Q, LDQ, WORK, NCYCLE, INFO )
  4 *
  5 *  -- LAPACK routine (version 3.3.1)                                 --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *  -- April 2009                                                      --
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          JOBQ, JOBU, JOBV
 12       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
 13      $                   NCYCLE, P
 14       DOUBLE PRECISION   TOLA, TOLB
 15 *     ..
 16 *     .. Array Arguments ..
 17       DOUBLE PRECISION   ALPHA( * ), BETA( * )
 18       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 19      $                   U( LDU, * ), V( LDV, * ), WORK( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  ZTGSJA computes the generalized singular value decomposition (GSVD)
 26 *  of two complex upper triangular (or trapezoidal) matrices A and B.
 27 *
 28 *  On entry, it is assumed that matrices A and B have the following
 29 *  forms, which may be obtained by the preprocessing subroutine ZGGSVP
 30 *  from a general M-by-N matrix A and P-by-N matrix B:
 31 *
 32 *               N-K-L  K    L
 33 *     A =    K ( 0    A12  A13 ) if M-K-L >= 0;
 34 *            L ( 0     0   A23 )
 35 *        M-K-L ( 0     0    0  )
 36 *
 37 *             N-K-L  K    L
 38 *     A =  K ( 0    A12  A13 ) if M-K-L < 0;
 39 *        M-K ( 0     0   A23 )
 40 *
 41 *             N-K-L  K    L
 42 *     B =  L ( 0     0   B13 )
 43 *        P-L ( 0     0    0  )
 44 *
 45 *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 46 *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 47 *  otherwise A23 is (M-K)-by-L upper trapezoidal.
 48 *
 49 *  On exit,
 50 *
 51 *         U**H *A*Q = D1*( 0 R ),    V**H *B*Q = D2*( 0 R ),
 52 *
 53 *  where U, V and Q are unitary matrices.
 54 *  R is a nonsingular upper triangular matrix, and D1
 55 *  and D2 are ``diagonal'' matrices, which are of the following
 56 *  structures:
 57 *
 58 *  If M-K-L >= 0,
 59 *
 60 *                      K  L
 61 *         D1 =     K ( I  0 )
 62 *                  L ( 0  C )
 63 *              M-K-L ( 0  0 )
 64 *
 65 *                     K  L
 66 *         D2 = L   ( 0  S )
 67 *              P-L ( 0  0 )
 68 *
 69 *                 N-K-L  K    L
 70 *    ( 0 R ) = K (  0   R11  R12 ) K
 71 *              L (  0    0   R22 ) L
 72 *
 73 *  where
 74 *
 75 *    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
 76 *    S = diag( BETA(K+1),  ... , BETA(K+L) ),
 77 *    C**2 + S**2 = I.
 78 *
 79 *    R is stored in A(1:K+L,N-K-L+1:N) on exit.
 80 *
 81 *  If M-K-L < 0,
 82 *
 83 *                 K M-K K+L-M
 84 *      D1 =   K ( I  0    0   )
 85 *           M-K ( 0  C    0   )
 86 *
 87 *                   K M-K K+L-M
 88 *      D2 =   M-K ( 0  S    0   )
 89 *           K+L-M ( 0  0    I   )
 90 *             P-L ( 0  0    0   )
 91 *
 92 *                 N-K-L  K   M-K  K+L-M
 93 * ( 0 R ) =    K ( 0    R11  R12  R13  )
 94 *            M-K ( 0     0   R22  R23  )
 95 *          K+L-M ( 0     0    0   R33  )
 96 *
 97 *  where
 98 *  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 99 *  S = diag( BETA(K+1),  ... , BETA(M) ),
100 *  C**2 + S**2 = I.
101 *
102 *  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
103 *      (  0  R22 R23 )
104 *  in B(M-K+1:L,N+M-K-L+1:N) on exit.
105 *
106 *  The computation of the unitary transformation matrices U, V or Q
107 *  is optional.  These matrices may either be formed explicitly, or they
108 *  may be postmultiplied into input matrices U1, V1, or Q1.
109 *
110 *  Arguments
111 *  =========
112 *
113 *  JOBU    (input) CHARACTER*1
114 *          = 'U':  U must contain a unitary matrix U1 on entry, and
115 *                  the product U1*U is returned;
116 *          = 'I':  U is initialized to the unit matrix, and the
117 *                  unitary matrix U is returned;
118 *          = 'N':  U is not computed.
119 *
120 *  JOBV    (input) CHARACTER*1
121 *          = 'V':  V must contain a unitary matrix V1 on entry, and
122 *                  the product V1*V is returned;
123 *          = 'I':  V is initialized to the unit matrix, and the
124 *                  unitary matrix V is returned;
125 *          = 'N':  V is not computed.
126 *
127 *  JOBQ    (input) CHARACTER*1
128 *          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
129 *                  the product Q1*Q is returned;
130 *          = 'I':  Q is initialized to the unit matrix, and the
131 *                  unitary matrix Q is returned;
132 *          = 'N':  Q is not computed.
133 *
134 *  M       (input) INTEGER
135 *          The number of rows of the matrix A.  M >= 0.
136 *
137 *  P       (input) INTEGER
138 *          The number of rows of the matrix B.  P >= 0.
139 *
140 *  N       (input) INTEGER
141 *          The number of columns of the matrices A and B.  N >= 0.
142 *
143 *  K       (input) INTEGER
144 *  L       (input) INTEGER
145 *          K and L specify the subblocks in the input matrices A and B:
146 *          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
147 *          of A and B, whose GSVD is going to be computed by ZTGSJA.
148 *          See Further Details.
149 *
150 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
151 *          On entry, the M-by-N matrix A.
152 *          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
153 *          matrix R or part of R.  See Purpose for details.
154 *
155 *  LDA     (input) INTEGER
156 *          The leading dimension of the array A. LDA >= max(1,M).
157 *
158 *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
159 *          On entry, the P-by-N matrix B.
160 *          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
161 *          a part of R.  See Purpose for details.
162 *
163 *  LDB     (input) INTEGER
164 *          The leading dimension of the array B. LDB >= max(1,P).
165 *
166 *  TOLA    (input) DOUBLE PRECISION
167 *  TOLB    (input) DOUBLE PRECISION
168 *          TOLA and TOLB are the convergence criteria for the Jacobi-
169 *          Kogbetliantz iteration procedure. Generally, they are the
170 *          same as used in the preprocessing step, say
171 *              TOLA = MAX(M,N)*norm(A)*MAZHEPS,
172 *              TOLB = MAX(P,N)*norm(B)*MAZHEPS.
173 *
174 *  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
175 *  BETA    (output) DOUBLE PRECISION array, dimension (N)
176 *          On exit, ALPHA and BETA contain the generalized singular
177 *          value pairs of A and B;
178 *            ALPHA(1:K) = 1,
179 *            BETA(1:K)  = 0,
180 *          and if M-K-L >= 0,
181 *            ALPHA(K+1:K+L) = diag(C),
182 *            BETA(K+1:K+L)  = diag(S),
183 *          or if M-K-L < 0,
184 *            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
185 *            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
186 *          Furthermore, if K+L < N,
187 *            ALPHA(K+L+1:N) = 0 and
188 *            BETA(K+L+1:N)  = 0.
189 *
190 *  U       (input/output) COMPLEX*16 array, dimension (LDU,M)
191 *          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
192 *          the unitary matrix returned by ZGGSVP).
193 *          On exit,
194 *          if JOBU = 'I', U contains the unitary matrix U;
195 *          if JOBU = 'U', U contains the product U1*U.
196 *          If JOBU = 'N', U is not referenced.
197 *
198 *  LDU     (input) INTEGER
199 *          The leading dimension of the array U. LDU >= max(1,M) if
200 *          JOBU = 'U'; LDU >= 1 otherwise.
201 *
202 *  V       (input/output) COMPLEX*16 array, dimension (LDV,P)
203 *          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
204 *          the unitary matrix returned by ZGGSVP).
205 *          On exit,
206 *          if JOBV = 'I', V contains the unitary matrix V;
207 *          if JOBV = 'V', V contains the product V1*V.
208 *          If JOBV = 'N', V is not referenced.
209 *
210 *  LDV     (input) INTEGER
211 *          The leading dimension of the array V. LDV >= max(1,P) if
212 *          JOBV = 'V'; LDV >= 1 otherwise.
213 *
214 *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
215 *          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
216 *          the unitary matrix returned by ZGGSVP).
217 *          On exit,
218 *          if JOBQ = 'I', Q contains the unitary matrix Q;
219 *          if JOBQ = 'Q', Q contains the product Q1*Q.
220 *          If JOBQ = 'N', Q is not referenced.
221 *
222 *  LDQ     (input) INTEGER
223 *          The leading dimension of the array Q. LDQ >= max(1,N) if
224 *          JOBQ = 'Q'; LDQ >= 1 otherwise.
225 *
226 *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
227 *
228 *  NCYCLE  (output) INTEGER
229 *          The number of cycles required for convergence.
230 *
231 *  INFO    (output) INTEGER
232 *          = 0:  successful exit
233 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
234 *          = 1:  the procedure does not converge after MAXIT cycles.
235 *
236 *  Internal Parameters
237 *  ===================
238 *
239 *  MAXIT   INTEGER
240 *          MAXIT specifies the total loops that the iterative procedure
241 *          may take. If after MAXIT cycles, the routine fails to
242 *          converge, we return INFO = 1.
243 *
244 *  Further Details
245 *  ===============
246 *
247 *  ZTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
248 *  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
249 *  matrix B13 to the form:
250 *
251 *           U1**H *A13*Q1 = C1*R1; V1**H *B13*Q1 = S1*R1,
252 *
253 *  where U1, V1 and Q1 are unitary matrix.
254 *  C1 and S1 are diagonal matrices satisfying
255 *
256 *                C1**2 + S1**2 = I,
257 *
258 *  and R1 is an L-by-L nonsingular upper triangular matrix.
259 *
260 *  =====================================================================
261 *
262 *     .. Parameters ..
263       INTEGER            MAXIT
264       PARAMETER          ( MAXIT = 40 )
265       DOUBLE PRECISION   ZERO, ONE
266       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
267       COMPLEX*16         CZERO, CONE
268       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
269      $                   CONE = ( 1.0D+00.0D+0 ) )
270 *     ..
271 *     .. Local Scalars ..
272 *
273       LOGICAL            INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
274       INTEGER            I, J, KCYCLE
275       DOUBLE PRECISION   A1, A3, B1, B3, CSQ, CSU, CSV, ERROR, GAMMA,
276      $                   RWK, SSMIN
277       COMPLEX*16         A2, B2, SNQ, SNU, SNV
278 *     ..
279 *     .. External Functions ..
280       LOGICAL            LSAME
281       EXTERNAL           LSAME
282 *     ..
283 *     .. External Subroutines ..
284       EXTERNAL           DLARTG, XERBLA, ZCOPY, ZDSCAL, ZLAGS2, ZLAPLL,
285      $                   ZLASET, ZROT
286 *     ..
287 *     .. Intrinsic Functions ..
288       INTRINSIC          ABSDBLEDCONJGMAXMIN
289 *     ..
290 *     .. Executable Statements ..
291 *
292 *     Decode and test the input parameters
293 *
294       INITU = LSAME( JOBU, 'I' )
295       WANTU = INITU .OR. LSAME( JOBU, 'U' )
296 *
297       INITV = LSAME( JOBV, 'I' )
298       WANTV = INITV .OR. LSAME( JOBV, 'V' )
299 *
300       INITQ = LSAME( JOBQ, 'I' )
301       WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
302 *
303       INFO = 0
304       IF.NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
305          INFO = -1
306       ELSE IF.NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
307          INFO = -2
308       ELSE IF.NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
309          INFO = -3
310       ELSE IF( M.LT.0 ) THEN
311          INFO = -4
312       ELSE IF( P.LT.0 ) THEN
313          INFO = -5
314       ELSE IF( N.LT.0 ) THEN
315          INFO = -6
316       ELSE IF( LDA.LT.MAX1, M ) ) THEN
317          INFO = -10
318       ELSE IF( LDB.LT.MAX1, P ) ) THEN
319          INFO = -12
320       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
321          INFO = -18
322       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
323          INFO = -20
324       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
325          INFO = -22
326       END IF
327       IF( INFO.NE.0 ) THEN
328          CALL XERBLA( 'ZTGSJA'-INFO )
329          RETURN
330       END IF
331 *
332 *     Initialize U, V and Q, if necessary
333 *
334       IF( INITU )
335      $   CALL ZLASET( 'Full', M, M, CZERO, CONE, U, LDU )
336       IF( INITV )
337      $   CALL ZLASET( 'Full', P, P, CZERO, CONE, V, LDV )
338       IF( INITQ )
339      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
340 *
341 *     Loop until convergence
342 *
343       UPPER = .FALSE.
344       DO 40 KCYCLE = 1, MAXIT
345 *
346          UPPER = .NOT.UPPER
347 *
348          DO 20 I = 1, L - 1
349             DO 10 J = I + 1, L
350 *
351                A1 = ZERO
352                A2 = CZERO
353                A3 = ZERO
354                IF( K+I.LE.M )
355      $            A1 = DBLE( A( K+I, N-L+I ) )
356                IF( K+J.LE.M )
357      $            A3 = DBLE( A( K+J, N-L+J ) )
358 *
359                B1 = DBLE( B( I, N-L+I ) )
360                B3 = DBLE( B( J, N-L+J ) )
361 *
362                IF( UPPER ) THEN
363                   IF( K+I.LE.M )
364      $               A2 = A( K+I, N-L+J )
365                   B2 = B( I, N-L+J )
366                ELSE
367                   IF( K+J.LE.M )
368      $               A2 = A( K+J, N-L+I )
369                   B2 = B( J, N-L+I )
370                END IF
371 *
372                CALL ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
373      $                      CSV, SNV, CSQ, SNQ )
374 *
375 *              Update (K+I)-th and (K+J)-th rows of matrix A: U**H *A
376 *
377                IF( K+J.LE.M )
378      $            CALL ZROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
379      $                       LDA, CSU, DCONJG( SNU ) )
380 *
381 *              Update I-th and J-th rows of matrix B: V**H *B
382 *
383                CALL ZROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
384      $                    CSV, DCONJG( SNV ) )
385 *
386 *              Update (N-L+I)-th and (N-L+J)-th columns of matrices
387 *              A and B: A*Q and B*Q
388 *
389                CALL ZROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
390      $                    A( 1, N-L+I ), 1, CSQ, SNQ )
391 *
392                CALL ZROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
393      $                    SNQ )
394 *
395                IF( UPPER ) THEN
396                   IF( K+I.LE.M )
397      $               A( K+I, N-L+J ) = CZERO
398                   B( I, N-L+J ) = CZERO
399                ELSE
400                   IF( K+J.LE.M )
401      $               A( K+J, N-L+I ) = CZERO
402                   B( J, N-L+I ) = CZERO
403                END IF
404 *
405 *              Ensure that the diagonal elements of A and B are real.
406 *
407                IF( K+I.LE.M )
408      $            A( K+I, N-L+I ) = DBLE( A( K+I, N-L+I ) )
409                IF( K+J.LE.M )
410      $            A( K+J, N-L+J ) = DBLE( A( K+J, N-L+J ) )
411                B( I, N-L+I ) = DBLE( B( I, N-L+I ) )
412                B( J, N-L+J ) = DBLE( B( J, N-L+J ) )
413 *
414 *              Update unitary matrices U, V, Q, if desired.
415 *
416                IF( WANTU .AND. K+J.LE.M )
417      $            CALL ZROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
418      $                       SNU )
419 *
420                IF( WANTV )
421      $            CALL ZROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
422 *
423                IF( WANTQ )
424      $            CALL ZROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
425      $                       SNQ )
426 *
427    10       CONTINUE
428    20    CONTINUE
429 *
430          IF.NOT.UPPER ) THEN
431 *
432 *           The matrices A13 and B13 were lower triangular at the start
433 *           of the cycle, and are now upper triangular.
434 *
435 *           Convergence test: test the parallelism of the corresponding
436 *           rows of A and B.
437 *
438             ERROR = ZERO
439             DO 30 I = 1MIN( L, M-K )
440                CALL ZCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
441                CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
442                CALL ZLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
443                ERROR = MAX( ERROR, SSMIN )
444    30       CONTINUE
445 *
446             IFABS( ERROR ).LE.MIN( TOLA, TOLB ) )
447      $         GO TO 50
448          END IF
449 *
450 *        End of cycle loop
451 *
452    40 CONTINUE
453 *
454 *     The algorithm has not converged after MAXIT cycles.
455 *
456       INFO = 1
457       GO TO 100
458 *
459    50 CONTINUE
460 *
461 *     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
462 *     Compute the generalized singular value pairs (ALPHA, BETA), and
463 *     set the triangular matrix R to array A.
464 *
465       DO 60 I = 1, K
466          ALPHA( I ) = ONE
467          BETA( I ) = ZERO
468    60 CONTINUE
469 *
470       DO 70 I = 1MIN( L, M-K )
471 *
472          A1 = DBLE( A( K+I, N-L+I ) )
473          B1 = DBLE( B( I, N-L+I ) )
474 *
475          IF( A1.NE.ZERO ) THEN
476             GAMMA = B1 / A1
477 *
478             IFGAMMA.LT.ZERO ) THEN
479                CALL ZDSCAL( L-I+1-ONE, B( I, N-L+I ), LDB )
480                IF( WANTV )
481      $            CALL ZDSCAL( P, -ONE, V( 1, I ), 1 )
482             END IF
483 *
484             CALL DLARTG( ABSGAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
485      $                   RWK )
486 *
487             IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
488                CALL ZDSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
489      $                      LDA )
490             ELSE
491                CALL ZDSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
492      $                      LDB )
493                CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
494      $                     LDA )
495             END IF
496 *
497          ELSE
498 *
499             ALPHA( K+I ) = ZERO
500             BETA( K+I ) = ONE
501             CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
502      $                  LDA )
503          END IF
504    70 CONTINUE
505 *
506 *     Post-assignment
507 *
508       DO 80 I = M + 1, K + L
509          ALPHA( I ) = ZERO
510          BETA( I ) = ONE
511    80 CONTINUE
512 *
513       IF( K+L.LT.N ) THEN
514          DO 90 I = K + L + 1, N
515             ALPHA( I ) = ZERO
516             BETA( I ) = ZERO
517    90    CONTINUE
518       END IF
519 *
520   100 CONTINUE
521       NCYCLE = KCYCLE
522 *
523       RETURN
524 *
525 *     End of ZTGSJA
526 *
527       END