1       SUBROUTINE ZTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
  2      $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
  3      $                   IWORK, INFO )
  4 *
  5 *  -- LAPACK routine (version 3.3.1) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *  -- April 2011                                                      --
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          TRANS
 12       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 13      $                   LWORK, M, N
 14       DOUBLE PRECISION   DIF, SCALE
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IWORK( * )
 18       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
 19      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 20      $                   WORK( * )
 21 *     ..
 22 *
 23 *  Purpose
 24 *  =======
 25 *
 26 *  ZTGSYL solves the generalized Sylvester equation:
 27 *
 28 *              A * R - L * B = scale * C            (1)
 29 *              D * R - L * E = scale * F
 30 *
 31 *  where R and L are unknown m-by-n matrices, (A, D), (B, E) and
 32 *  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
 33 *  respectively, with complex entries. A, B, D and E are upper
 34 *  triangular (i.e., (A,D) and (B,E) in generalized Schur form).
 35 *
 36 *  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
 37 *  is an output scaling factor chosen to avoid overflow.
 38 *
 39 *  In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
 40 *  is defined as
 41 *
 42 *         Z = [ kron(In, A)  -kron(B**H, Im) ]        (2)
 43 *             [ kron(In, D)  -kron(E**H, Im) ],
 44 *
 45 *  Here Ix is the identity matrix of size x and X**H is the conjugate
 46 *  transpose of X. Kron(X, Y) is the Kronecker product between the
 47 *  matrices X and Y.
 48 *
 49 *  If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
 50 *  is solved for, which is equivalent to solve for R and L in
 51 *
 52 *              A**H * R + D**H * L = scale * C           (3)
 53 *              R * B**H + L * E**H = scale * -F
 54 *
 55 *  This case (TRANS = 'C') is used to compute an one-norm-based estimate
 56 *  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
 57 *  and (B,E), using ZLACON.
 58 *
 59 *  If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of
 60 *  Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
 61 *  reciprocal of the smallest singular value of Z.
 62 *
 63 *  This is a level-3 BLAS algorithm.
 64 *
 65 *  Arguments
 66 *  =========
 67 *
 68 *  TRANS   (input) CHARACTER*1
 69 *          = 'N': solve the generalized sylvester equation (1).
 70 *          = 'C': solve the "conjugate transposed" system (3).
 71 *
 72 *  IJOB    (input) INTEGER
 73 *          Specifies what kind of functionality to be performed.
 74 *          =0: solve (1) only.
 75 *          =1: The functionality of 0 and 3.
 76 *          =2: The functionality of 0 and 4.
 77 *          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
 78 *              (look ahead strategy is used).
 79 *          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
 80 *              (ZGECON on sub-systems is used).
 81 *          Not referenced if TRANS = 'C'.
 82 *
 83 *  M       (input) INTEGER
 84 *          The order of the matrices A and D, and the row dimension of
 85 *          the matrices C, F, R and L.
 86 *
 87 *  N       (input) INTEGER
 88 *          The order of the matrices B and E, and the column dimension
 89 *          of the matrices C, F, R and L.
 90 *
 91 *  A       (input) COMPLEX*16 array, dimension (LDA, M)
 92 *          The upper triangular matrix A.
 93 *
 94 *  LDA     (input) INTEGER
 95 *          The leading dimension of the array A. LDA >= max(1, M).
 96 *
 97 *  B       (input) COMPLEX*16 array, dimension (LDB, N)
 98 *          The upper triangular matrix B.
 99 *
100 *  LDB     (input) INTEGER
101 *          The leading dimension of the array B. LDB >= max(1, N).
102 *
103 *  C       (input/output) COMPLEX*16 array, dimension (LDC, N)
104 *          On entry, C contains the right-hand-side of the first matrix
105 *          equation in (1) or (3).
106 *          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
107 *          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
108 *          the solution achieved during the computation of the
109 *          Dif-estimate.
110 *
111 *  LDC     (input) INTEGER
112 *          The leading dimension of the array C. LDC >= max(1, M).
113 *
114 *  D       (input) COMPLEX*16 array, dimension (LDD, M)
115 *          The upper triangular matrix D.
116 *
117 *  LDD     (input) INTEGER
118 *          The leading dimension of the array D. LDD >= max(1, M).
119 *
120 *  E       (input) COMPLEX*16 array, dimension (LDE, N)
121 *          The upper triangular matrix E.
122 *
123 *  LDE     (input) INTEGER
124 *          The leading dimension of the array E. LDE >= max(1, N).
125 *
126 *  F       (input/output) COMPLEX*16 array, dimension (LDF, N)
127 *          On entry, F contains the right-hand-side of the second matrix
128 *          equation in (1) or (3).
129 *          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
130 *          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
131 *          the solution achieved during the computation of the
132 *          Dif-estimate.
133 *
134 *  LDF     (input) INTEGER
135 *          The leading dimension of the array F. LDF >= max(1, M).
136 *
137 *  DIF     (output) DOUBLE PRECISION
138 *          On exit DIF is the reciprocal of a lower bound of the
139 *          reciprocal of the Dif-function, i.e. DIF is an upper bound of
140 *          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
141 *          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
142 *
143 *  SCALE   (output) DOUBLE PRECISION
144 *          On exit SCALE is the scaling factor in (1) or (3).
145 *          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
146 *          to a slightly perturbed system but the input matrices A, B,
147 *          D and E have not been changed. If SCALE = 0, R and L will
148 *          hold the solutions to the homogenious system with C = F = 0.
149 *
150 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
151 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
152 *
153 *  LWORK   (input) INTEGER
154 *          The dimension of the array WORK. LWORK > = 1.
155 *          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
156 *
157 *          If LWORK = -1, then a workspace query is assumed; the routine
158 *          only calculates the optimal size of the WORK array, returns
159 *          this value as the first entry of the WORK array, and no error
160 *          message related to LWORK is issued by XERBLA.
161 *
162 *  IWORK   (workspace) INTEGER array, dimension (M+N+2)
163 *
164 *  INFO    (output) INTEGER
165 *            =0: successful exit
166 *            <0: If INFO = -i, the i-th argument had an illegal value.
167 *            >0: (A, D) and (B, E) have common or very close
168 *                eigenvalues.
169 *
170 *  Further Details
171 *  ===============
172 *
173 *  Based on contributions by
174 *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
175 *     Umea University, S-901 87 Umea, Sweden.
176 *
177 *  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
178 *      for Solving the Generalized Sylvester Equation and Estimating the
179 *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
180 *      Department of Computing Science, Umea University, S-901 87 Umea,
181 *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
182 *      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
183 *      No 1, 1996.
184 *
185 *  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
186 *      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
187 *      Appl., 15(4):1045-1060, 1994.
188 *
189 *  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
190 *      Condition Estimators for Solving the Generalized Sylvester
191 *      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
192 *      July 1989, pp 745-751.
193 *
194 *  =====================================================================
195 *  Replaced various illegal calls to CCOPY by calls to CLASET.
196 *  Sven Hammarling, 1/5/02.
197 *
198 *     .. Parameters ..
199       DOUBLE PRECISION   ZERO, ONE
200       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
201       COMPLEX*16         CZERO
202       PARAMETER          ( CZERO = (0.0D+00.0D+0) )
203 *     ..
204 *     .. Local Scalars ..
205       LOGICAL            LQUERY, NOTRAN
206       INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
207      $                   LINFO, LWMIN, MB, NB, P, PQ, Q
208       DOUBLE PRECISION   DSCALE, DSUM, SCALE2, SCALOC
209 *     ..
210 *     .. External Functions ..
211       LOGICAL            LSAME
212       INTEGER            ILAENV
213       EXTERNAL           LSAME, ILAENV
214 *     ..
215 *     .. External Subroutines ..
216       EXTERNAL           XERBLA, ZGEMM, ZLACPY, ZLASET, ZSCAL, ZTGSY2
217 *     ..
218 *     .. Intrinsic Functions ..
219       INTRINSIC          DBLEDCMPLXMAXSQRT
220 *     ..
221 *     .. Executable Statements ..
222 *
223 *     Decode and test input parameters
224 *
225       INFO = 0
226       NOTRAN = LSAME( TRANS, 'N' )
227       LQUERY = ( LWORK.EQ.-1 )
228 *
229       IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
230          INFO = -1
231       ELSE IF( NOTRAN ) THEN
232          IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
233             INFO = -2
234          END IF
235       END IF
236       IF( INFO.EQ.0 ) THEN
237          IF( M.LE.0 ) THEN
238             INFO = -3
239          ELSE IF( N.LE.0 ) THEN
240             INFO = -4
241          ELSE IF( LDA.LT.MAX1, M ) ) THEN
242             INFO = -6
243          ELSE IF( LDB.LT.MAX1, N ) ) THEN
244             INFO = -8
245          ELSE IF( LDC.LT.MAX1, M ) ) THEN
246             INFO = -10
247          ELSE IF( LDD.LT.MAX1, M ) ) THEN
248             INFO = -12
249          ELSE IF( LDE.LT.MAX1, N ) ) THEN
250             INFO = -14
251          ELSE IF( LDF.LT.MAX1, M ) ) THEN
252             INFO = -16
253          END IF
254       END IF
255 *
256       IF( INFO.EQ.0 ) THEN
257          IF( NOTRAN ) THEN
258             IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
259                LWMIN = MAX12*M*N )
260             ELSE
261                LWMIN = 1
262             END IF
263          ELSE
264             LWMIN = 1
265          END IF
266          WORK( 1 ) = LWMIN
267 *
268          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
269             INFO = -20
270          END IF
271       END IF
272 *
273       IF( INFO.NE.0 ) THEN
274          CALL XERBLA( 'ZTGSYL'-INFO )
275          RETURN
276       ELSE IF( LQUERY ) THEN
277          RETURN
278       END IF
279 *
280 *     Quick return if possible
281 *
282       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
283          SCALE = 1
284          IF( NOTRAN ) THEN
285             IF( IJOB.NE.0 ) THEN
286                DIF = 0
287             END IF
288          END IF
289          RETURN
290       END IF
291 *
292 *     Determine  optimal block sizes MB and NB
293 *
294       MB = ILAENV( 2'ZTGSYL', TRANS, M, N, -1-1 )
295       NB = ILAENV( 5'ZTGSYL', TRANS, M, N, -1-1 )
296 *
297       ISOLVE = 1
298       IFUNC = 0
299       IF( NOTRAN ) THEN
300          IF( IJOB.GE.3 ) THEN
301             IFUNC = IJOB - 2
302             CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
303             CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
304          ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
305             ISOLVE = 2
306          END IF
307       END IF
308 *
309       IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE..AND. NB.GE.N ) )
310      $     THEN
311 *
312 *        Use unblocked Level 2 solver
313 *
314          DO 30 IROUND = 1, ISOLVE
315 *
316             SCALE = ONE
317             DSCALE = ZERO
318             DSUM = ONE
319             PQ = M*N
320             CALL ZTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
321      $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
322      $                   INFO )
323             IF( DSCALE.NE.ZERO ) THEN
324                IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
325                   DIF = SQRTDBLE2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
326                ELSE
327                   DIF = SQRTDBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
328                END IF
329             END IF
330             IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
331                IF( NOTRAN ) THEN
332                   IFUNC = IJOB
333                END IF
334                SCALE2 = SCALE
335                CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
336                CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
337                CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
338                CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
339             ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
340                CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
341                CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
342                SCALE = SCALE2
343             END IF
344    30    CONTINUE
345 *
346          RETURN
347 *
348       END IF
349 *
350 *     Determine block structure of A
351 *
352       P = 0
353       I = 1
354    40 CONTINUE
355       IF( I.GT.M )
356      $   GO TO 50
357       P = P + 1
358       IWORK( P ) = I
359       I = I + MB
360       IF( I.GE.M )
361      $   GO TO 50
362       GO TO 40
363    50 CONTINUE
364       IWORK( P+1 ) = M + 1
365       IF( IWORK( P ).EQ.IWORK( P+1 ) )
366      $   P = P - 1
367 *
368 *     Determine block structure of B
369 *
370       Q = P + 1
371       J = 1
372    60 CONTINUE
373       IF( J.GT.N )
374      $   GO TO 70
375 *
376       Q = Q + 1
377       IWORK( Q ) = J
378       J = J + NB
379       IF( J.GE.N )
380      $   GO TO 70
381       GO TO 60
382 *
383    70 CONTINUE
384       IWORK( Q+1 ) = N + 1
385       IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
386      $   Q = Q - 1
387 *
388       IF( NOTRAN ) THEN
389          DO 150 IROUND = 1, ISOLVE
390 *
391 *           Solve (I, J) - subsystem
392 *               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
393 *               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
394 *           for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
395 *
396             PQ = 0
397             SCALE = ONE
398             DSCALE = ZERO
399             DSUM = ONE
400             DO 130 J = P + 2, Q
401                JS = IWORK( J )
402                JE = IWORK( J+1 ) - 1
403                NB = JE - JS + 1
404                DO 120 I = P, 1-1
405                   IS = IWORK( I )
406                   IE = IWORK( I+1 ) - 1
407                   MB = IE - IS + 1
408                   CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
409      $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
410      $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
411      $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
412      $                         LINFO )
413                   IF( LINFO.GT.0 )
414      $               INFO = LINFO
415                   PQ = PQ + MB*NB
416                   IF( SCALOC.NE.ONE ) THEN
417                      DO 80 K = 1, JS - 1
418                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
419      $                              C( 1, K ), 1 )
420                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
421      $                              F( 1, K ), 1 )
422    80                CONTINUE
423                      DO 90 K = JS, JE
424                         CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
425      $                              C( 1, K ), 1 )
426                         CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
427      $                              F( 1, K ), 1 )
428    90                CONTINUE
429                      DO 100 K = JS, JE
430                         CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
431      $                              C( IE+1, K ), 1 )
432                         CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
433      $                              F( IE+1, K ), 1 )
434   100                CONTINUE
435                      DO 110 K = JE + 1, N
436                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
437      $                              C( 1, K ), 1 )
438                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
439      $                              F( 1, K ), 1 )
440   110                CONTINUE
441                      SCALE = SCALE*SCALOC
442                   END IF
443 *
444 *                 Substitute R(I,J) and L(I,J) into remaining equation.
445 *
446                   IF( I.GT.1 ) THEN
447                      CALL ZGEMM( 'N''N', IS-1, NB, MB,
448      $                           DCMPLX-ONE, ZERO ), A( 1, IS ), LDA,
449      $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
450      $                           C( 1, JS ), LDC )
451                      CALL ZGEMM( 'N''N', IS-1, NB, MB,
452      $                           DCMPLX-ONE, ZERO ), D( 1, IS ), LDD,
453      $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
454      $                           F( 1, JS ), LDF )
455                   END IF
456                   IF( J.LT.Q ) THEN
457                      CALL ZGEMM( 'N''N', MB, N-JE, NB,
458      $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
459      $                           B( JS, JE+1 ), LDB,
460      $                           DCMPLX( ONE, ZERO ), C( IS, JE+1 ),
461      $                           LDC )
462                      CALL ZGEMM( 'N''N', MB, N-JE, NB,
463      $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
464      $                           E( JS, JE+1 ), LDE,
465      $                           DCMPLX( ONE, ZERO ), F( IS, JE+1 ),
466      $                           LDF )
467                   END IF
468   120          CONTINUE
469   130       CONTINUE
470             IF( DSCALE.NE.ZERO ) THEN
471                IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
472                   DIF = SQRTDBLE2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
473                ELSE
474                   DIF = SQRTDBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
475                END IF
476             END IF
477             IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
478                IF( NOTRAN ) THEN
479                   IFUNC = IJOB
480                END IF
481                SCALE2 = SCALE
482                CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
483                CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
484                CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
485                CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
486             ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
487                CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
488                CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
489                SCALE = SCALE2
490             END IF
491   150    CONTINUE
492       ELSE
493 *
494 *        Solve transposed (I, J)-subsystem
495 *            A(I, I)**H * R(I, J) + D(I, I)**H * L(I, J) = C(I, J)
496 *            R(I, J) * B(J, J)  + L(I, J) * E(J, J) = -F(I, J)
497 *        for I = 1,2,..., P; J = Q, Q-1,..., 1
498 *
499          SCALE = ONE
500          DO 210 I = 1, P
501             IS = IWORK( I )
502             IE = IWORK( I+1 ) - 1
503             MB = IE - IS + 1
504             DO 200 J = Q, P + 2-1
505                JS = IWORK( J )
506                JE = IWORK( J+1 ) - 1
507                NB = JE - JS + 1
508                CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
509      $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
510      $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
511      $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
512      $                      LINFO )
513                IF( LINFO.GT.0 )
514      $            INFO = LINFO
515                IF( SCALOC.NE.ONE ) THEN
516                   DO 160 K = 1, JS - 1
517                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
518      $                           1 )
519                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
520      $                           1 )
521   160             CONTINUE
522                   DO 170 K = JS, JE
523                      CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
524      $                           C( 1, K ), 1 )
525                      CALL ZSCAL( IS-1DCMPLX( SCALOC, ZERO ),
526      $                           F( 1, K ), 1 )
527   170             CONTINUE
528                   DO 180 K = JS, JE
529                      CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
530      $                           C( IE+1, K ), 1 )
531                      CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
532      $                           F( IE+1, K ), 1 )
533   180             CONTINUE
534                   DO 190 K = JE + 1, N
535                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
536      $                           1 )
537                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
538      $                           1 )
539   190             CONTINUE
540                   SCALE = SCALE*SCALOC
541                END IF
542 *
543 *              Substitute R(I,J) and L(I,J) into remaining equation.
544 *
545                IF( J.GT.P+2 ) THEN
546                   CALL ZGEMM( 'N''C', MB, JS-1, NB,
547      $                        DCMPLX( ONE, ZERO ), C( IS, JS ), LDC,
548      $                        B( 1, JS ), LDB, DCMPLX( ONE, ZERO ),
549      $                        F( IS, 1 ), LDF )
550                   CALL ZGEMM( 'N''C', MB, JS-1, NB,
551      $                        DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
552      $                        E( 1, JS ), LDE, DCMPLX( ONE, ZERO ),
553      $                        F( IS, 1 ), LDF )
554                END IF
555                IF( I.LT.P ) THEN
556                   CALL ZGEMM( 'C''N', M-IE, NB, MB,
557      $                        DCMPLX-ONE, ZERO ), A( IS, IE+1 ), LDA,
558      $                        C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
559      $                        C( IE+1, JS ), LDC )
560                   CALL ZGEMM( 'C''N', M-IE, NB, MB,
561      $                        DCMPLX-ONE, ZERO ), D( IS, IE+1 ), LDD,
562      $                        F( IS, JS ), LDF, DCMPLX( ONE, ZERO ),
563      $                        C( IE+1, JS ), LDC )
564                END IF
565   200       CONTINUE
566   210    CONTINUE
567       END IF
568 *
569       WORK( 1 ) = LWMIN
570 *
571       RETURN
572 *
573 *     End of ZTGSYL
574 *
575       END