1       SUBROUTINE ZTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
  2      $                   INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          DIAG, NORM, UPLO
 13       INTEGER            INFO, N
 14       DOUBLE PRECISION   RCOND
 15 *     ..
 16 *     .. Array Arguments ..
 17       DOUBLE PRECISION   RWORK( * )
 18       COMPLEX*16         AP( * ), WORK( * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  ZTPCON estimates the reciprocal of the condition number of a packed
 25 *  triangular matrix A, in either the 1-norm or the infinity-norm.
 26 *
 27 *  The norm of A is computed and an estimate is obtained for
 28 *  norm(inv(A)), then the reciprocal of the condition number is
 29 *  computed as
 30 *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  NORM    (input) CHARACTER*1
 36 *          Specifies whether the 1-norm condition number or the
 37 *          infinity-norm condition number is required:
 38 *          = '1' or 'O':  1-norm;
 39 *          = 'I':         Infinity-norm.
 40 *
 41 *  UPLO    (input) CHARACTER*1
 42 *          = 'U':  A is upper triangular;
 43 *          = 'L':  A is lower triangular.
 44 *
 45 *  DIAG    (input) CHARACTER*1
 46 *          = 'N':  A is non-unit triangular;
 47 *          = 'U':  A is unit triangular.
 48 *
 49 *  N       (input) INTEGER
 50 *          The order of the matrix A.  N >= 0.
 51 *
 52 *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 53 *          The upper or lower triangular matrix A, packed columnwise in
 54 *          a linear array.  The j-th column of A is stored in the array
 55 *          AP as follows:
 56 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 57 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 58 *          If DIAG = 'U', the diagonal elements of A are not referenced
 59 *          and are assumed to be 1.
 60 *
 61 *  RCOND   (output) DOUBLE PRECISION
 62 *          The reciprocal of the condition number of the matrix A,
 63 *          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 64 *
 65 *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
 66 *
 67 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
 68 *
 69 *  INFO    (output) INTEGER
 70 *          = 0:  successful exit
 71 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 72 *
 73 *  =====================================================================
 74 *
 75 *     .. Parameters ..
 76       DOUBLE PRECISION   ONE, ZERO
 77       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 78 *     ..
 79 *     .. Local Scalars ..
 80       LOGICAL            NOUNIT, ONENRM, UPPER
 81       CHARACTER          NORMIN
 82       INTEGER            IX, KASE, KASE1
 83       DOUBLE PRECISION   AINVNM, ANORM, SCALE, SMLNUM, XNORM
 84       COMPLEX*16         ZDUM
 85 *     ..
 86 *     .. Local Arrays ..
 87       INTEGER            ISAVE( 3 )
 88 *     ..
 89 *     .. External Functions ..
 90       LOGICAL            LSAME
 91       INTEGER            IZAMAX
 92       DOUBLE PRECISION   DLAMCH, ZLANTP
 93       EXTERNAL           LSAME, IZAMAX, DLAMCH, ZLANTP
 94 *     ..
 95 *     .. External Subroutines ..
 96       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLATPS
 97 *     ..
 98 *     .. Intrinsic Functions ..
 99       INTRINSIC          ABSDBLEDIMAGMAX
100 *     ..
101 *     .. Statement Functions ..
102       DOUBLE PRECISION   CABS1
103 *     ..
104 *     .. Statement Function definitions ..
105       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
106 *     ..
107 *     .. Executable Statements ..
108 *
109 *     Test the input parameters.
110 *
111       INFO = 0
112       UPPER = LSAME( UPLO, 'U' )
113       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
114       NOUNIT = LSAME( DIAG, 'N' )
115 *
116       IF.NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
117          INFO = -1
118       ELSE IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
119          INFO = -2
120       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
121          INFO = -3
122       ELSE IF( N.LT.0 ) THEN
123          INFO = -4
124       END IF
125       IF( INFO.NE.0 ) THEN
126          CALL XERBLA( 'ZTPCON'-INFO )
127          RETURN
128       END IF
129 *
130 *     Quick return if possible
131 *
132       IF( N.EQ.0 ) THEN
133          RCOND = ONE
134          RETURN
135       END IF
136 *
137       RCOND = ZERO
138       SMLNUM = DLAMCH( 'Safe minimum' )*DBLEMAX1, N ) )
139 *
140 *     Compute the norm of the triangular matrix A.
141 *
142       ANORM = ZLANTP( NORM, UPLO, DIAG, N, AP, RWORK )
143 *
144 *     Continue only if ANORM > 0.
145 *
146       IF( ANORM.GT.ZERO ) THEN
147 *
148 *        Estimate the norm of the inverse of A.
149 *
150          AINVNM = ZERO
151          NORMIN = 'N'
152          IF( ONENRM ) THEN
153             KASE1 = 1
154          ELSE
155             KASE1 = 2
156          END IF
157          KASE = 0
158    10    CONTINUE
159          CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
160          IF( KASE.NE.0 ) THEN
161             IF( KASE.EQ.KASE1 ) THEN
162 *
163 *              Multiply by inv(A).
164 *
165                CALL ZLATPS( UPLO, 'No transpose', DIAG, NORMIN, N, AP,
166      $                      WORK, SCALE, RWORK, INFO )
167             ELSE
168 *
169 *              Multiply by inv(A**H).
170 *
171                CALL ZLATPS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
172      $                      N, AP, WORK, SCALE, RWORK, INFO )
173             END IF
174             NORMIN = 'Y'
175 *
176 *           Multiply by 1/SCALE if doing so will not cause overflow.
177 *
178             IFSCALE.NE.ONE ) THEN
179                IX = IZAMAX( N, WORK, 1 )
180                XNORM = CABS1( WORK( IX ) )
181                IFSCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
182      $            GO TO 20
183                CALL ZDRSCL( N, SCALE, WORK, 1 )
184             END IF
185             GO TO 10
186          END IF
187 *
188 *        Compute the estimate of the reciprocal condition number.
189 *
190          IF( AINVNM.NE.ZERO )
191      $      RCOND = ( ONE / ANORM ) / AINVNM
192       END IF
193 *
194    20 CONTINUE
195       RETURN
196 *
197 *     End of ZTPCON
198 *
199       END