1       SUBROUTINE ZTRTRI( UPLO, DIAG, N, A, LDA, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, UPLO
 10       INTEGER            INFO, LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZTRTRI computes the inverse of a complex upper or lower triangular
 20 *  matrix A.
 21 *
 22 *  This is the Level 3 BLAS version of the algorithm.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          = 'U':  A is upper triangular;
 29 *          = 'L':  A is lower triangular.
 30 *
 31 *  DIAG    (input) CHARACTER*1
 32 *          = 'N':  A is non-unit triangular;
 33 *          = 'U':  A is unit triangular.
 34 *
 35 *  N       (input) INTEGER
 36 *          The order of the matrix A.  N >= 0.
 37 *
 38 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 39 *          On entry, the triangular matrix A.  If UPLO = 'U', the
 40 *          leading N-by-N upper triangular part of the array A contains
 41 *          the upper triangular matrix, and the strictly lower
 42 *          triangular part of A is not referenced.  If UPLO = 'L', the
 43 *          leading N-by-N lower triangular part of the array A contains
 44 *          the lower triangular matrix, and the strictly upper
 45 *          triangular part of A is not referenced.  If DIAG = 'U', the
 46 *          diagonal elements of A are also not referenced and are
 47 *          assumed to be 1.
 48 *          On exit, the (triangular) inverse of the original matrix, in
 49 *          the same storage format.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A.  LDA >= max(1,N).
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0: successful exit
 56 *          < 0: if INFO = -i, the i-th argument had an illegal value
 57 *          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
 58 *               matrix is singular and its inverse can not be computed.
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       COMPLEX*16         ONE, ZERO
 64       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ),
 65      $                   ZERO = ( 0.0D+00.0D+0 ) )
 66 *     ..
 67 *     .. Local Scalars ..
 68       LOGICAL            NOUNIT, UPPER
 69       INTEGER            J, JB, NB, NN
 70 *     ..
 71 *     .. External Functions ..
 72       LOGICAL            LSAME
 73       INTEGER            ILAENV
 74       EXTERNAL           LSAME, ILAENV
 75 *     ..
 76 *     .. External Subroutines ..
 77       EXTERNAL           XERBLA, ZTRMM, ZTRSM, ZTRTI2
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          MAXMIN
 81 *     ..
 82 *     .. Executable Statements ..
 83 *
 84 *     Test the input parameters.
 85 *
 86       INFO = 0
 87       UPPER = LSAME( UPLO, 'U' )
 88       NOUNIT = LSAME( DIAG, 'N' )
 89       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 90          INFO = -1
 91       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 92          INFO = -2
 93       ELSE IF( N.LT.0 ) THEN
 94          INFO = -3
 95       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 96          INFO = -5
 97       END IF
 98       IF( INFO.NE.0 ) THEN
 99          CALL XERBLA( 'ZTRTRI'-INFO )
100          RETURN
101       END IF
102 *
103 *     Quick return if possible
104 *
105       IF( N.EQ.0 )
106      $   RETURN
107 *
108 *     Check for singularity if non-unit.
109 *
110       IF( NOUNIT ) THEN
111          DO 10 INFO = 1, N
112             IF( A( INFO, INFO ).EQ.ZERO )
113      $         RETURN
114    10    CONTINUE
115          INFO = 0
116       END IF
117 *
118 *     Determine the block size for this environment.
119 *
120       NB = ILAENV( 1'ZTRTRI', UPLO // DIAG, N, -1-1-1 )
121       IF( NB.LE.1 .OR. NB.GE.N ) THEN
122 *
123 *        Use unblocked code
124 *
125          CALL ZTRTI2( UPLO, DIAG, N, A, LDA, INFO )
126       ELSE
127 *
128 *        Use blocked code
129 *
130          IF( UPPER ) THEN
131 *
132 *           Compute inverse of upper triangular matrix
133 *
134             DO 20 J = 1, N, NB
135                JB = MIN( NB, N-J+1 )
136 *
137 *              Compute rows 1:j-1 of current block column
138 *
139                CALL ZTRMM( 'Left''Upper''No transpose', DIAG, J-1,
140      $                     JB, ONE, A, LDA, A( 1, J ), LDA )
141                CALL ZTRSM( 'Right''Upper''No transpose', DIAG, J-1,
142      $                     JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
143 *
144 *              Compute inverse of current diagonal block
145 *
146                CALL ZTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
147    20       CONTINUE
148          ELSE
149 *
150 *           Compute inverse of lower triangular matrix
151 *
152             NN = ( ( N-1 ) / NB )*NB + 1
153             DO 30 J = NN, 1-NB
154                JB = MIN( NB, N-J+1 )
155                IF( J+JB.LE.N ) THEN
156 *
157 *                 Compute rows j+jb:n of current block column
158 *
159                   CALL ZTRMM( 'Left''Lower''No transpose', DIAG,
160      $                        N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
161      $                        A( J+JB, J ), LDA )
162                   CALL ZTRSM( 'Right''Lower''No transpose', DIAG,
163      $                        N-J-JB+1, JB, -ONE, A( J, J ), LDA,
164      $                        A( J+JB, J ), LDA )
165                END IF
166 *
167 *              Compute inverse of current diagonal block
168 *
169                CALL ZTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
170    30       CONTINUE
171          END IF
172       END IF
173 *
174       RETURN
175 *
176 *     End of ZTRTRI
177 *
178       END