1       SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  2      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  3      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  4       IMPLICIT NONE
  5 *
  6 *  -- LAPACK routine ((version 3.3.0)) --
  7 *
  8 *  -- Contributed by Brian Sutton of the Randolph-Macon College --
  9 *  -- November 2010
 10 *
 11 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 12 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
 13 *
 14 *     .. Scalar Arguments ..
 15       CHARACTER          SIGNS, TRANS
 16       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
 17      $                   Q
 18 *     ..
 19 *     .. Array Arguments ..
 20       DOUBLE PRECISION   PHI( * ), THETA( * )
 21       COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
 22      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
 23      $                   X21( LDX21, * ), X22( LDX22, * )
 24 *     ..
 25 *
 26 *  Purpose
 27 *  =======
 28 *
 29 *  ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
 30 *  partitioned unitary matrix X:
 31 *
 32 *                                  [ B11 | B12 0  0 ]
 33 *      [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
 34 *  X = [-----------] = [---------] [----------------] [---------]   .
 35 *      [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
 36 *                                  [  0  |  0  0  I ]
 37 *
 38 *  X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
 39 *  not the case, then X must be transposed and/or permuted. This can be
 40 *  done in constant time using the TRANS and SIGNS options. See ZUNCSD
 41 *  for details.)
 42 *
 43 *  The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
 44 *  (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
 45 *  represented implicitly by Householder vectors.
 46 *
 47 *  B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
 48 *  implicitly by angles THETA, PHI.
 49 *
 50 *  Arguments
 51 *  =========
 52 *
 53 *  TRANS   (input) CHARACTER
 54 *          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
 55 *                      order;
 56 *          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
 57 *                      major order.
 58 *
 59 *  SIGNS   (input) CHARACTER
 60 *          = 'O':      The lower-left block is made nonpositive (the
 61 *                      "other" convention);
 62 *          otherwise:  The upper-right block is made nonpositive (the
 63 *                      "default" convention).
 64 *
 65 *  M       (input) INTEGER
 66 *          The number of rows and columns in X.
 67 *
 68 *  P       (input) INTEGER
 69 *          The number of rows in X11 and X12. 0 <= P <= M.
 70 *
 71 *  Q       (input) INTEGER
 72 *          The number of columns in X11 and X21. 0 <= Q <=
 73 *          MIN(P,M-P,M-Q).
 74 *
 75 *  X11     (input/output) COMPLEX*16 array, dimension (LDX11,Q)
 76 *          On entry, the top-left block of the unitary matrix to be
 77 *          reduced. On exit, the form depends on TRANS:
 78 *          If TRANS = 'N', then
 79 *             the columns of tril(X11) specify reflectors for P1,
 80 *             the rows of triu(X11,1) specify reflectors for Q1;
 81 *          else TRANS = 'T', and
 82 *             the rows of triu(X11) specify reflectors for P1,
 83 *             the columns of tril(X11,-1) specify reflectors for Q1.
 84 *
 85 *  LDX11   (input) INTEGER
 86 *          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
 87 *          P; else LDX11 >= Q.
 88 *
 89 *  X12     (input/output) COMPLEX*16 array, dimension (LDX12,M-Q)
 90 *          On entry, the top-right block of the unitary matrix to
 91 *          be reduced. On exit, the form depends on TRANS:
 92 *          If TRANS = 'N', then
 93 *             the rows of triu(X12) specify the first P reflectors for
 94 *             Q2;
 95 *          else TRANS = 'T', and
 96 *             the columns of tril(X12) specify the first P reflectors
 97 *             for Q2.
 98 *
 99 *  LDX12   (input) INTEGER
100 *          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
101 *          P; else LDX11 >= M-Q.
102 *
103 *  X21     (input/output) COMPLEX*16 array, dimension (LDX21,Q)
104 *          On entry, the bottom-left block of the unitary matrix to
105 *          be reduced. On exit, the form depends on TRANS:
106 *          If TRANS = 'N', then
107 *             the columns of tril(X21) specify reflectors for P2;
108 *          else TRANS = 'T', and
109 *             the rows of triu(X21) specify reflectors for P2.
110 *
111 *  LDX21   (input) INTEGER
112 *          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
113 *          M-P; else LDX21 >= Q.
114 *
115 *  X22     (input/output) COMPLEX*16 array, dimension (LDX22,M-Q)
116 *          On entry, the bottom-right block of the unitary matrix to
117 *          be reduced. On exit, the form depends on TRANS:
118 *          If TRANS = 'N', then
119 *             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
120 *             M-P-Q reflectors for Q2,
121 *          else TRANS = 'T', and
122 *             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
123 *             M-P-Q reflectors for P2.
124 *
125 *  LDX22   (input) INTEGER
126 *          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
127 *          M-P; else LDX22 >= M-Q.
128 *
129 *  THETA   (output) DOUBLE PRECISION array, dimension (Q)
130 *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
131 *          be computed from the angles THETA and PHI. See Further
132 *          Details.
133 *
134 *  PHI     (output) DOUBLE PRECISION array, dimension (Q-1)
135 *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
136 *          be computed from the angles THETA and PHI. See Further
137 *          Details.
138 *
139 *  TAUP1   (output) COMPLEX*16 array, dimension (P)
140 *          The scalar factors of the elementary reflectors that define
141 *          P1.
142 *
143 *  TAUP2   (output) COMPLEX*16 array, dimension (M-P)
144 *          The scalar factors of the elementary reflectors that define
145 *          P2.
146 *
147 *  TAUQ1   (output) COMPLEX*16 array, dimension (Q)
148 *          The scalar factors of the elementary reflectors that define
149 *          Q1.
150 *
151 *  TAUQ2   (output) COMPLEX*16 array, dimension (M-Q)
152 *          The scalar factors of the elementary reflectors that define
153 *          Q2.
154 *
155 *  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
156 *
157 *  LWORK   (input) INTEGER
158 *          The dimension of the array WORK. LWORK >= M-Q.
159 *
160 *          If LWORK = -1, then a workspace query is assumed; the routine
161 *          only calculates the optimal size of the WORK array, returns
162 *          this value as the first entry of the WORK array, and no error
163 *          message related to LWORK is issued by XERBLA.
164 *
165 *  INFO    (output) INTEGER
166 *          = 0:  successful exit.
167 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
168 *
169 *  Further Details
170 *  ===============
171 *
172 *  The bidiagonal blocks B11, B12, B21, and B22 are represented
173 *  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
174 *  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
175 *  lower bidiagonal. Every entry in each bidiagonal band is a product
176 *  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
177 *  [1] or ZUNCSD for details.
178 *
179 *  P1, P2, Q1, and Q2 are represented as products of elementary
180 *  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
181 *  using ZUNGQR and ZUNGLQ.
182 *
183 *  Reference
184 *  =========
185 *
186 *  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
187 *      Algorithms, 50(1):33-65, 2009.
188 *
189 *  ====================================================================
190 *
191 *     .. Parameters ..
192       DOUBLE PRECISION   REALONE
193       PARAMETER          ( REALONE = 1.0D0 )
194       COMPLEX*16         NEGONE, ONE
195       PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
196      $                     ONE = (1.0D0,0.0D0) )
197 *     ..
198 *     .. Local Scalars ..
199       LOGICAL            COLMAJOR, LQUERY
200       INTEGER            I, LWORKMIN, LWORKOPT
201       DOUBLE PRECISION   Z1, Z2, Z3, Z4
202 *     ..
203 *     .. External Subroutines ..
204       EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
205       EXTERNAL           ZLACGV
206 *
207 *     ..
208 *     .. External Functions ..
209       DOUBLE PRECISION   DZNRM2
210       LOGICAL            LSAME
211       EXTERNAL           DZNRM2, LSAME
212 *     ..
213 *     .. Intrinsic Functions
214       INTRINSIC          ATAN2COSMAXMINSIN
215       INTRINSIC          DCMPLXDCONJG
216 *     ..
217 *     .. Executable Statements ..
218 *
219 *     Test input arguments
220 *
221       INFO = 0
222       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
223       IF.NOT. LSAME( SIGNS, 'O' ) ) THEN
224          Z1 = REALONE
225          Z2 = REALONE
226          Z3 = REALONE
227          Z4 = REALONE
228       ELSE
229          Z1 = REALONE
230          Z2 = -REALONE
231          Z3 = REALONE
232          Z4 = -REALONE
233       END IF
234       LQUERY = LWORK .EQ. -1
235 *
236       IF( M .LT. 0 ) THEN
237          INFO = -3
238       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
239          INFO = -4
240       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-.OR.
241      $         Q .GT. M-Q ) THEN
242          INFO = -5
243       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX1, P ) ) THEN
244          INFO = -7
245       ELSE IF.NOT.COLMAJOR .AND. LDX11 .LT. MAX1, Q ) ) THEN
246          INFO = -7
247       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX1, P ) ) THEN
248          INFO = -9
249       ELSE IF.NOT.COLMAJOR .AND. LDX12 .LT. MAX1, M-Q ) ) THEN
250          INFO = -9
251       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX1, M-P ) ) THEN
252          INFO = -11
253       ELSE IF.NOT.COLMAJOR .AND. LDX21 .LT. MAX1, Q ) ) THEN
254          INFO = -11
255       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX1, M-P ) ) THEN
256          INFO = -13
257       ELSE IF.NOT.COLMAJOR .AND. LDX22 .LT. MAX1, M-Q ) ) THEN
258          INFO = -13
259       END IF
260 *
261 *     Compute workspace
262 *
263       IF( INFO .EQ. 0 ) THEN
264          LWORKOPT = M - Q
265          LWORKMIN = M - Q
266          WORK(1= LWORKOPT
267          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
268             INFO = -21
269          END IF
270       END IF
271       IF( INFO .NE. 0 ) THEN
272          CALL XERBLA( 'xORBDB'-INFO )
273          RETURN
274       ELSE IF( LQUERY ) THEN
275          RETURN
276       END IF
277 *
278 *     Handle column-major and row-major separately
279 *
280       IF( COLMAJOR ) THEN
281 *
282 *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
283 *
284          DO I = 1, Q
285 *
286             IF( I .EQ. 1 ) THEN
287                CALL ZSCAL( P-I+1DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
288             ELSE
289                CALL ZSCAL( P-I+1DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
290      $                     X11(I,I), 1 )
291                CALL ZAXPY( P-I+1DCMPLX-Z1*Z3*Z4*SIN(PHI(I-1)),
292      $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
293             END IF
294             IF( I .EQ. 1 ) THEN
295                CALL ZSCAL( M-P-I+1DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
296             ELSE
297                CALL ZSCAL( M-P-I+1DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
298      $                     X21(I,I), 1 )
299                CALL ZAXPY( M-P-I+1DCMPLX-Z2*Z3*Z4*SIN(PHI(I-1)),
300      $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
301             END IF
302 *
303             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
304      $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
305 *
306             CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
307             X11(I,I) = ONE
308             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
309             X21(I,I) = ONE
310 *
311             CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1DCONJG(TAUP1(I)),
312      $                  X11(I,I+1), LDX11, WORK )
313             CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
314      $                  DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
315             CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
316      $                  DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
317             CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
318      $                  DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
319 *
320             IF( I .LT. Q ) THEN
321                CALL ZSCAL( Q-I, DCMPLX-Z1*Z3*SIN(THETA(I)), 0.0D0 ),
322      $                     X11(I,I+1), LDX11 )
323                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
324      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
325             END IF
326             CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4*SIN(THETA(I)), 0.0D0 ),
327      $                  X12(I,I), LDX12 )
328             CALL ZAXPY( M-Q-I+1DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
329      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
330 *
331             IF( I .LT. Q )
332      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
333      $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
334 *
335             IF( I .LT. Q ) THEN
336                CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
337                CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
338      $                       TAUQ1(I) )
339                X11(I,I+1= ONE
340             END IF
341             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
342             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
343      $                    TAUQ2(I) )
344             X12(I,I) = ONE
345 *
346             IF( I .LT. Q ) THEN
347                CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
348      $                     X11(I+1,I+1), LDX11, WORK )
349                CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
350      $                     X21(I+1,I+1), LDX21, WORK )
351             END IF
352             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
353      $                  X12(I+1,I), LDX12, WORK )
354             CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
355      $                  X22(I+1,I), LDX22, WORK )
356 *
357             IF( I .LT. Q )
358      $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
359             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
360 *
361          END DO
362 *
363 *        Reduce columns Q + 1, ..., P of X12, X22
364 *
365          DO I = Q + 1, P
366 *
367             CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4, 0.0D0 ), X12(I,I),
368      $                  LDX12 )
369             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
370             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
371      $                    TAUQ2(I) )
372             X12(I,I) = ONE
373 *
374             CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
375      $                  X12(I+1,I), LDX12, WORK )
376             IF( M-P-.GE. 1 )
377      $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
378      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
379 *
380             CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
381 *
382          END DO
383 *
384 *        Reduce columns P + 1, ..., M - Q of X12, X22
385 *
386          DO I = 1, M - P - Q
387 *
388             CALL ZSCAL( M-P-Q-I+1DCMPLX( Z2*Z4, 0.0D0 ),
389      $                  X22(Q+I,P+I), LDX22 )
390             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
391             CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
392      $                    LDX22, TAUQ2(P+I) )
393             X22(Q+I,P+I) = ONE
394             CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
395      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
396 *
397             CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
398 *
399          END DO
400 *
401       ELSE
402 *
403 *        Reduce columns 1, ..., Q of X11, X12, X21, X22
404 *
405          DO I = 1, Q
406 *
407             IF( I .EQ. 1 ) THEN
408                CALL ZSCAL( P-I+1DCMPLX( Z1, 0.0D0 ), X11(I,I),
409      $                     LDX11 )
410             ELSE
411                CALL ZSCAL( P-I+1DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
412      $                     X11(I,I), LDX11 )
413                CALL ZAXPY( P-I+1DCMPLX-Z1*Z3*Z4*SIN(PHI(I-1)),
414      $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
415             END IF
416             IF( I .EQ. 1 ) THEN
417                CALL ZSCAL( M-P-I+1DCMPLX( Z2, 0.0D0 ), X21(I,I),
418      $                     LDX21 )
419             ELSE
420                CALL ZSCAL( M-P-I+1DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
421      $                     X21(I,I), LDX21 )
422                CALL ZAXPY( M-P-I+1DCMPLX-Z2*Z3*Z4*SIN(PHI(I-1)),
423      $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
424             END IF
425 *
426             THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
427      $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
428 *
429             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
430             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
431 *
432             CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
433             X11(I,I) = ONE
434             CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
435      $                    TAUP2(I) )
436             X21(I,I) = ONE
437 *
438             CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
439      $                  X11(I+1,I), LDX11, WORK )
440             CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
441      $                  X12(I,I), LDX12, WORK )
442             CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
443      $                  X21(I+1,I), LDX21, WORK )
444             CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
445      $                  TAUP2(I), X22(I,I), LDX22, WORK )
446 *
447             CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
448             CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
449 *
450             IF( I .LT. Q ) THEN
451                CALL ZSCAL( Q-I, DCMPLX-Z1*Z3*SIN(THETA(I)), 0.0D0 ),
452      $                     X11(I+1,I), 1 )
453                CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
454      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
455             END IF
456             CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4*SIN(THETA(I)), 0.0D0 ),
457      $                  X12(I,I), 1 )
458             CALL ZAXPY( M-Q-I+1DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
459      $                  X22(I,I), 1, X12(I,I), 1 )
460 *
461             IF( I .LT. Q )
462      $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
463      $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
464 *
465             IF( I .LT. Q ) THEN
466                CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
467                X11(I+1,I) = ONE
468             END IF
469             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
470             X12(I,I) = ONE
471 *
472             IF( I .LT. Q ) THEN
473                CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
474      $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
475                CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
476      $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
477             END IF
478             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
479      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
480             CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
481      $                  DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
482 *
483          END DO
484 *
485 *        Reduce columns Q + 1, ..., P of X12, X22
486 *
487          DO I = Q + 1, P
488 *
489             CALL ZSCAL( M-Q-I+1DCMPLX-Z1*Z4, 0.0D0 ), X12(I,I), 1 )
490             CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
491             X12(I,I) = ONE
492 *
493             CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
494      $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
495             IF( M-P-.GE. 1 )
496      $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
497      $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
498 *
499          END DO
500 *
501 *        Reduce columns P + 1, ..., M - Q of X12, X22
502 *
503          DO I = 1, M - P - Q
504 *
505             CALL ZSCAL( M-P-Q-I+1DCMPLX( Z2*Z4, 0.0D0 ),
506      $                  X22(P+I,Q+I), 1 )
507             CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
508      $                    TAUQ2(P+I) )
509             X22(P+I,Q+I) = ONE
510 *
511             CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
512      $                  DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
513      $                  WORK )
514 *
515          END DO
516 *
517       END IF
518 *
519       RETURN
520 *
521 *     End of ZUNBDB
522 *
523       END
524