1       SUBROUTINE ZUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          VECT
 10       INTEGER            INFO, K, LDA, LWORK, M, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZUNGBR generates one of the complex unitary matrices Q or P**H
 20 *  determined by ZGEBRD when reducing a complex matrix A to bidiagonal
 21 *  form: A = Q * B * P**H.  Q and P**H are defined as products of
 22 *  elementary reflectors H(i) or G(i) respectively.
 23 *
 24 *  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
 25 *  is of order M:
 26 *  if m >= k, Q = H(1) H(2) . . . H(k) and ZUNGBR returns the first n
 27 *  columns of Q, where m >= n >= k;
 28 *  if m < k, Q = H(1) H(2) . . . H(m-1) and ZUNGBR returns Q as an
 29 *  M-by-M matrix.
 30 *
 31 *  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
 32 *  is of order N:
 33 *  if k < n, P**H = G(k) . . . G(2) G(1) and ZUNGBR returns the first m
 34 *  rows of P**H, where n >= m >= k;
 35 *  if k >= n, P**H = G(n-1) . . . G(2) G(1) and ZUNGBR returns P**H as
 36 *  an N-by-N matrix.
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *  VECT    (input) CHARACTER*1
 42 *          Specifies whether the matrix Q or the matrix P**H is
 43 *          required, as defined in the transformation applied by ZGEBRD:
 44 *          = 'Q':  generate Q;
 45 *          = 'P':  generate P**H.
 46 *
 47 *  M       (input) INTEGER
 48 *          The number of rows of the matrix Q or P**H to be returned.
 49 *          M >= 0.
 50 *
 51 *  N       (input) INTEGER
 52 *          The number of columns of the matrix Q or P**H to be returned.
 53 *          N >= 0.
 54 *          If VECT = 'Q', M >= N >= min(M,K);
 55 *          if VECT = 'P', N >= M >= min(N,K).
 56 *
 57 *  K       (input) INTEGER
 58 *          If VECT = 'Q', the number of columns in the original M-by-K
 59 *          matrix reduced by ZGEBRD.
 60 *          If VECT = 'P', the number of rows in the original K-by-N
 61 *          matrix reduced by ZGEBRD.
 62 *          K >= 0.
 63 *
 64 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 65 *          On entry, the vectors which define the elementary reflectors,
 66 *          as returned by ZGEBRD.
 67 *          On exit, the M-by-N matrix Q or P**H.
 68 *
 69 *  LDA     (input) INTEGER
 70 *          The leading dimension of the array A. LDA >= M.
 71 *
 72 *  TAU     (input) COMPLEX*16 array, dimension
 73 *                                (min(M,K)) if VECT = 'Q'
 74 *                                (min(N,K)) if VECT = 'P'
 75 *          TAU(i) must contain the scalar factor of the elementary
 76 *          reflector H(i) or G(i), which determines Q or P**H, as
 77 *          returned by ZGEBRD in its array argument TAUQ or TAUP.
 78 *
 79 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 80 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 81 *
 82 *  LWORK   (input) INTEGER
 83 *          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
 84 *          For optimum performance LWORK >= min(M,N)*NB, where NB
 85 *          is the optimal blocksize.
 86 *
 87 *          If LWORK = -1, then a workspace query is assumed; the routine
 88 *          only calculates the optimal size of the WORK array, returns
 89 *          this value as the first entry of the WORK array, and no error
 90 *          message related to LWORK is issued by XERBLA.
 91 *
 92 *  INFO    (output) INTEGER
 93 *          = 0:  successful exit
 94 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 95 *
 96 *  =====================================================================
 97 *
 98 *     .. Parameters ..
 99       COMPLEX*16         ZERO, ONE
100       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ),
101      $                   ONE = ( 1.0D+00.0D+0 ) )
102 *     ..
103 *     .. Local Scalars ..
104       LOGICAL            LQUERY, WANTQ
105       INTEGER            I, IINFO, J, LWKOPT, MN, NB
106 *     ..
107 *     .. External Functions ..
108       LOGICAL            LSAME
109       INTEGER            ILAENV
110       EXTERNAL           LSAME, ILAENV
111 *     ..
112 *     .. External Subroutines ..
113       EXTERNAL           XERBLA, ZUNGLQ, ZUNGQR
114 *     ..
115 *     .. Intrinsic Functions ..
116       INTRINSIC          MAXMIN
117 *     ..
118 *     .. Executable Statements ..
119 *
120 *     Test the input arguments
121 *
122       INFO = 0
123       WANTQ = LSAME( VECT, 'Q' )
124       MN = MIN( M, N )
125       LQUERY = ( LWORK.EQ.-1 )
126       IF.NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
127          INFO = -1
128       ELSE IF( M.LT.0 ) THEN
129          INFO = -2
130       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT..OR. N.LT.MIN( M,
131      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT..OR. M.LT.
132      $         MIN( N, K ) ) ) ) THEN
133          INFO = -3
134       ELSE IF( K.LT.0 ) THEN
135          INFO = -4
136       ELSE IF( LDA.LT.MAX1, M ) ) THEN
137          INFO = -6
138       ELSE IF( LWORK.LT.MAX1, MN ) .AND. .NOT.LQUERY ) THEN
139          INFO = -9
140       END IF
141 *
142       IF( INFO.EQ.0 ) THEN
143          IF( WANTQ ) THEN
144             NB = ILAENV( 1'ZUNGQR'' ', M, N, K, -1 )
145          ELSE
146             NB = ILAENV( 1'ZUNGLQ'' ', M, N, K, -1 )
147          END IF
148          LWKOPT = MAX1, MN )*NB
149          WORK( 1 ) = LWKOPT
150       END IF
151 *
152       IF( INFO.NE.0 ) THEN
153          CALL XERBLA( 'ZUNGBR'-INFO )
154          RETURN
155       ELSE IF( LQUERY ) THEN
156          RETURN
157       END IF
158 *
159 *     Quick return if possible
160 *
161       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
162          WORK( 1 ) = 1
163          RETURN
164       END IF
165 *
166       IF( WANTQ ) THEN
167 *
168 *        Form Q, determined by a call to ZGEBRD to reduce an m-by-k
169 *        matrix
170 *
171          IF( M.GE.K ) THEN
172 *
173 *           If m >= k, assume m >= n >= k
174 *
175             CALL ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
176 *
177          ELSE
178 *
179 *           If m < k, assume m = n
180 *
181 *           Shift the vectors which define the elementary reflectors one
182 *           column to the right, and set the first row and column of Q
183 *           to those of the unit matrix
184 *
185             DO 20 J = M, 2-1
186                A( 1, J ) = ZERO
187                DO 10 I = J + 1, M
188                   A( I, J ) = A( I, J-1 )
189    10          CONTINUE
190    20       CONTINUE
191             A( 11 ) = ONE
192             DO 30 I = 2, M
193                A( I, 1 ) = ZERO
194    30       CONTINUE
195             IF( M.GT.1 ) THEN
196 *
197 *              Form Q(2:m,2:m)
198 *
199                CALL ZUNGQR( M-1, M-1, M-1, A( 22 ), LDA, TAU, WORK,
200      $                      LWORK, IINFO )
201             END IF
202          END IF
203       ELSE
204 *
205 *        Form P**H, determined by a call to ZGEBRD to reduce a k-by-n
206 *        matrix
207 *
208          IF( K.LT.N ) THEN
209 *
210 *           If k < n, assume k <= m <= n
211 *
212             CALL ZUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
213 *
214          ELSE
215 *
216 *           If k >= n, assume m = n
217 *
218 *           Shift the vectors which define the elementary reflectors one
219 *           row downward, and set the first row and column of P**H to
220 *           those of the unit matrix
221 *
222             A( 11 ) = ONE
223             DO 40 I = 2, N
224                A( I, 1 ) = ZERO
225    40       CONTINUE
226             DO 60 J = 2, N
227                DO 50 I = J - 12-1
228                   A( I, J ) = A( I-1, J )
229    50          CONTINUE
230                A( 1, J ) = ZERO
231    60       CONTINUE
232             IF( N.GT.1 ) THEN
233 *
234 *              Form P**H(2:n,2:n)
235 *
236                CALL ZUNGLQ( N-1, N-1, N-1, A( 22 ), LDA, TAU, WORK,
237      $                      LWORK, IINFO )
238             END IF
239          END IF
240       END IF
241       WORK( 1 ) = LWKOPT
242       RETURN
243 *
244 *     End of ZUNGBR
245 *
246       END