1       SUBROUTINE ZUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
 19 *  which is defined as the first m rows of a product of k elementary
 20 *  reflectors of order n
 21 *
 22 *        Q  =  H(k)**H . . . H(2)**H H(1)**H
 23 *
 24 *  as returned by ZGELQF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. N >= M.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. M >= K >= 0.
 38 *
 39 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 40 *          On entry, the i-th row must contain the vector which defines
 41 *          the elementary reflector H(i), for i = 1,2,...,k, as returned
 42 *          by ZGELQF in the first k rows of its array argument A.
 43 *          On exit, the m by n matrix Q.
 44 *
 45 *  LDA     (input) INTEGER
 46 *          The first dimension of the array A. LDA >= max(1,M).
 47 *
 48 *  TAU     (input) COMPLEX*16 array, dimension (K)
 49 *          TAU(i) must contain the scalar factor of the elementary
 50 *          reflector H(i), as returned by ZGELQF.
 51 *
 52 *  WORK    (workspace) COMPLEX*16 array, dimension (M)
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0: successful exit
 56 *          < 0: if INFO = -i, the i-th argument has an illegal value
 57 *
 58 *  =====================================================================
 59 *
 60 *     .. Parameters ..
 61       COMPLEX*16         ONE, ZERO
 62       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ),
 63      $                   ZERO = ( 0.0D+00.0D+0 ) )
 64 *     ..
 65 *     .. Local Scalars ..
 66       INTEGER            I, J, L
 67 *     ..
 68 *     .. External Subroutines ..
 69       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZSCAL
 70 *     ..
 71 *     .. Intrinsic Functions ..
 72       INTRINSIC          DCONJGMAX
 73 *     ..
 74 *     .. Executable Statements ..
 75 *
 76 *     Test the input arguments
 77 *
 78       INFO = 0
 79       IF( M.LT.0 ) THEN
 80          INFO = -1
 81       ELSE IF( N.LT.M ) THEN
 82          INFO = -2
 83       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
 84          INFO = -3
 85       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 86          INFO = -5
 87       END IF
 88       IF( INFO.NE.0 ) THEN
 89          CALL XERBLA( 'ZUNGL2'-INFO )
 90          RETURN
 91       END IF
 92 *
 93 *     Quick return if possible
 94 *
 95       IF( M.LE.0 )
 96      $   RETURN
 97 *
 98       IF( K.LT.M ) THEN
 99 *
100 *        Initialise rows k+1:m to rows of the unit matrix
101 *
102          DO 20 J = 1, N
103             DO 10 L = K + 1, M
104                A( L, J ) = ZERO
105    10       CONTINUE
106             IF( J.GT..AND. J.LE.M )
107      $         A( J, J ) = ONE
108    20    CONTINUE
109       END IF
110 *
111       DO 40 I = K, 1-1
112 *
113 *        Apply H(i)**H to A(i:m,i:n) from the right
114 *
115          IF( I.LT.N ) THEN
116             CALL ZLACGV( N-I, A( I, I+1 ), LDA )
117             IF( I.LT.M ) THEN
118                A( I, I ) = ONE
119                CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
120      $                     DCONJG( TAU( I ) ), A( I+1, I ), LDA, WORK )
121             END IF
122             CALL ZSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
123             CALL ZLACGV( N-I, A( I, I+1 ), LDA )
124          END IF
125          A( I, I ) = ONE - DCONJG( TAU( I ) )
126 *
127 *        Set A(i,1:i-1) to zero
128 *
129          DO 30 L = 1, I - 1
130             A( I, L ) = ZERO
131    30    CONTINUE
132    40 CONTINUE
133       RETURN
134 *
135 *     End of ZUNGL2
136 *
137       END