1       SUBROUTINE ZUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, LWORK, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  ZUNGLQ generates an M-by-N complex matrix Q with orthonormal rows,
 19 *  which is defined as the first M rows of a product of K elementary
 20 *  reflectors of order N
 21 *
 22 *        Q  =  H(k)**H . . . H(2)**H H(1)**H
 23 *
 24 *  as returned by ZGELQF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. N >= M.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. M >= K >= 0.
 38 *
 39 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 40 *          On entry, the i-th row must contain the vector which defines
 41 *          the elementary reflector H(i), for i = 1,2,...,k, as returned
 42 *          by ZGELQF in the first k rows of its array argument A.
 43 *          On exit, the M-by-N matrix Q.
 44 *
 45 *  LDA     (input) INTEGER
 46 *          The first dimension of the array A. LDA >= max(1,M).
 47 *
 48 *  TAU     (input) COMPLEX*16 array, dimension (K)
 49 *          TAU(i) must contain the scalar factor of the elementary
 50 *          reflector H(i), as returned by ZGELQF.
 51 *
 52 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 53 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 54 *
 55 *  LWORK   (input) INTEGER
 56 *          The dimension of the array WORK. LWORK >= max(1,M).
 57 *          For optimum performance LWORK >= M*NB, where NB is
 58 *          the optimal blocksize.
 59 *
 60 *          If LWORK = -1, then a workspace query is assumed; the routine
 61 *          only calculates the optimal size of the WORK array, returns
 62 *          this value as the first entry of the WORK array, and no error
 63 *          message related to LWORK is issued by XERBLA.
 64 *
 65 *  INFO    (output) INTEGER
 66 *          = 0:  successful exit;
 67 *          < 0:  if INFO = -i, the i-th argument has an illegal value
 68 *
 69 *  =====================================================================
 70 *
 71 *     .. Parameters ..
 72       COMPLEX*16         ZERO
 73       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ) )
 74 *     ..
 75 *     .. Local Scalars ..
 76       LOGICAL            LQUERY
 77       INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
 78      $                   LWKOPT, NB, NBMIN, NX
 79 *     ..
 80 *     .. External Subroutines ..
 81       EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNGL2
 82 *     ..
 83 *     .. Intrinsic Functions ..
 84       INTRINSIC          MAXMIN
 85 *     ..
 86 *     .. External Functions ..
 87       INTEGER            ILAENV
 88       EXTERNAL           ILAENV
 89 *     ..
 90 *     .. Executable Statements ..
 91 *
 92 *     Test the input arguments
 93 *
 94       INFO = 0
 95       NB = ILAENV( 1'ZUNGLQ'' ', M, N, K, -1 )
 96       LWKOPT = MAX1, M )*NB
 97       WORK( 1 ) = LWKOPT
 98       LQUERY = ( LWORK.EQ.-1 )
 99       IF( M.LT.0 ) THEN
100          INFO = -1
101       ELSE IF( N.LT.M ) THEN
102          INFO = -2
103       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
104          INFO = -3
105       ELSE IF( LDA.LT.MAX1, M ) ) THEN
106          INFO = -5
107       ELSE IF( LWORK.LT.MAX1, M ) .AND. .NOT.LQUERY ) THEN
108          INFO = -8
109       END IF
110       IF( INFO.NE.0 ) THEN
111          CALL XERBLA( 'ZUNGLQ'-INFO )
112          RETURN
113       ELSE IF( LQUERY ) THEN
114          RETURN
115       END IF
116 *
117 *     Quick return if possible
118 *
119       IF( M.LE.0 ) THEN
120          WORK( 1 ) = 1
121          RETURN
122       END IF
123 *
124       NBMIN = 2
125       NX = 0
126       IWS = M
127       IF( NB.GT.1 .AND. NB.LT.K ) THEN
128 *
129 *        Determine when to cross over from blocked to unblocked code.
130 *
131          NX = MAX0, ILAENV( 3'ZUNGLQ'' ', M, N, K, -1 ) )
132          IF( NX.LT.K ) THEN
133 *
134 *           Determine if workspace is large enough for blocked code.
135 *
136             LDWORK = M
137             IWS = LDWORK*NB
138             IF( LWORK.LT.IWS ) THEN
139 *
140 *              Not enough workspace to use optimal NB:  reduce NB and
141 *              determine the minimum value of NB.
142 *
143                NB = LWORK / LDWORK
144                NBMIN = MAX2, ILAENV( 2'ZUNGLQ'' ', M, N, K, -1 ) )
145             END IF
146          END IF
147       END IF
148 *
149       IF( NB.GE.NBMIN .AND. NB.LT..AND. NX.LT.K ) THEN
150 *
151 *        Use blocked code after the last block.
152 *        The first kk rows are handled by the block method.
153 *
154          KI = ( ( K-NX-1 ) / NB )*NB
155          KK = MIN( K, KI+NB )
156 *
157 *        Set A(kk+1:m,1:kk) to zero.
158 *
159          DO 20 J = 1, KK
160             DO 10 I = KK + 1, M
161                A( I, J ) = ZERO
162    10       CONTINUE
163    20    CONTINUE
164       ELSE
165          KK = 0
166       END IF
167 *
168 *     Use unblocked code for the last or only block.
169 *
170       IF( KK.LT.M )
171      $   CALL ZUNGL2( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
172      $                TAU( KK+1 ), WORK, IINFO )
173 *
174       IF( KK.GT.0 ) THEN
175 *
176 *        Use blocked code
177 *
178          DO 50 I = KI + 11-NB
179             IB = MIN( NB, K-I+1 )
180             IF( I+IB.LE.M ) THEN
181 *
182 *              Form the triangular factor of the block reflector
183 *              H = H(i) H(i+1) . . . H(i+ib-1)
184 *
185                CALL ZLARFT( 'Forward''Rowwise', N-I+1, IB, A( I, I ),
186      $                      LDA, TAU( I ), WORK, LDWORK )
187 *
188 *              Apply H**H to A(i+ib:m,i:n) from the right
189 *
190                CALL ZLARFB( 'Right''Conjugate transpose''Forward',
191      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
192      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
193      $                      WORK( IB+1 ), LDWORK )
194             END IF
195 *
196 *           Apply H**H to columns i:n of current block
197 *
198             CALL ZUNGL2( IB, N-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
199      $                   IINFO )
200 *
201 *           Set columns 1:i-1 of current block to zero
202 *
203             DO 40 J = 1, I - 1
204                DO 30 L = I, I + IB - 1
205                   A( L, J ) = ZERO
206    30          CONTINUE
207    40       CONTINUE
208    50    CONTINUE
209       END IF
210 *
211       WORK( 1 ) = IWS
212       RETURN
213 *
214 *     End of ZUNGLQ
215 *
216       END