1       SUBROUTINE ZUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, K, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  ZUNGR2 generates an m by n complex matrix Q with orthonormal rows,
 19 *  which is defined as the last m rows of a product of k elementary
 20 *  reflectors of order n
 21 *
 22 *        Q  =  H(1)**H H(2)**H . . . H(k)**H
 23 *
 24 *  as returned by ZGERQF.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  M       (input) INTEGER
 30 *          The number of rows of the matrix Q. M >= 0.
 31 *
 32 *  N       (input) INTEGER
 33 *          The number of columns of the matrix Q. N >= M.
 34 *
 35 *  K       (input) INTEGER
 36 *          The number of elementary reflectors whose product defines the
 37 *          matrix Q. M >= K >= 0.
 38 *
 39 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 40 *          On entry, the (m-k+i)-th row must contain the vector which
 41 *          defines the elementary reflector H(i), for i = 1,2,...,k, as
 42 *          returned by ZGERQF in the last k rows of its array argument
 43 *          A.
 44 *          On exit, the m-by-n matrix Q.
 45 *
 46 *  LDA     (input) INTEGER
 47 *          The first dimension of the array A. LDA >= max(1,M).
 48 *
 49 *  TAU     (input) COMPLEX*16 array, dimension (K)
 50 *          TAU(i) must contain the scalar factor of the elementary
 51 *          reflector H(i), as returned by ZGERQF.
 52 *
 53 *  WORK    (workspace) COMPLEX*16 array, dimension (M)
 54 *
 55 *  INFO    (output) INTEGER
 56 *          = 0: successful exit
 57 *          < 0: if INFO = -i, the i-th argument has an illegal value
 58 *
 59 *  =====================================================================
 60 *
 61 *     .. Parameters ..
 62       COMPLEX*16         ONE, ZERO
 63       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ),
 64      $                   ZERO = ( 0.0D+00.0D+0 ) )
 65 *     ..
 66 *     .. Local Scalars ..
 67       INTEGER            I, II, J, L
 68 *     ..
 69 *     .. External Subroutines ..
 70       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZSCAL
 71 *     ..
 72 *     .. Intrinsic Functions ..
 73       INTRINSIC          DCONJGMAX
 74 *     ..
 75 *     .. Executable Statements ..
 76 *
 77 *     Test the input arguments
 78 *
 79       INFO = 0
 80       IF( M.LT.0 ) THEN
 81          INFO = -1
 82       ELSE IF( N.LT.M ) THEN
 83          INFO = -2
 84       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
 85          INFO = -3
 86       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 87          INFO = -5
 88       END IF
 89       IF( INFO.NE.0 ) THEN
 90          CALL XERBLA( 'ZUNGR2'-INFO )
 91          RETURN
 92       END IF
 93 *
 94 *     Quick return if possible
 95 *
 96       IF( M.LE.0 )
 97      $   RETURN
 98 *
 99       IF( K.LT.M ) THEN
100 *
101 *        Initialise rows 1:m-k to rows of the unit matrix
102 *
103          DO 20 J = 1, N
104             DO 10 L = 1, M - K
105                A( L, J ) = ZERO
106    10       CONTINUE
107             IF( J.GT.N-.AND. J.LE.N-K )
108      $         A( M-N+J, J ) = ONE
109    20    CONTINUE
110       END IF
111 *
112       DO 40 I = 1, K
113          II = M - K + I
114 *
115 *        Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right
116 *
117          CALL ZLACGV( N-M+II-1, A( II, 1 ), LDA )
118          A( II, N-M+II ) = ONE
119          CALL ZLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA,
120      $               DCONJG( TAU( I ) ), A, LDA, WORK )
121          CALL ZSCAL( N-M+II-1-TAU( I ), A( II, 1 ), LDA )
122          CALL ZLACGV( N-M+II-1, A( II, 1 ), LDA )
123          A( II, N-M+II ) = ONE - DCONJG( TAU( I ) )
124 *
125 *        Set A(m-k+i,n-k+i+1:n) to zero
126 *
127          DO 30 L = N - M + II + 1, N
128             A( II, L ) = ZERO
129    30    CONTINUE
130    40 CONTINUE
131       RETURN
132 *
133 *     End of ZUNGR2
134 *
135       END