1       SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, LWORK, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZUNGTR generates a complex unitary matrix Q which is defined as the
 20 *  product of n-1 elementary reflectors of order N, as returned by
 21 *  ZHETRD:
 22 *
 23 *  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
 24 *
 25 *  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  UPLO    (input) CHARACTER*1
 31 *          = 'U': Upper triangle of A contains elementary reflectors
 32 *                 from ZHETRD;
 33 *          = 'L': Lower triangle of A contains elementary reflectors
 34 *                 from ZHETRD.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix Q. N >= 0.
 38 *
 39 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 40 *          On entry, the vectors which define the elementary reflectors,
 41 *          as returned by ZHETRD.
 42 *          On exit, the N-by-N unitary matrix Q.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A. LDA >= N.
 46 *
 47 *  TAU     (input) COMPLEX*16 array, dimension (N-1)
 48 *          TAU(i) must contain the scalar factor of the elementary
 49 *          reflector H(i), as returned by ZHETRD.
 50 *
 51 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 52 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 53 *
 54 *  LWORK   (input) INTEGER
 55 *          The dimension of the array WORK. LWORK >= N-1.
 56 *          For optimum performance LWORK >= (N-1)*NB, where NB is
 57 *          the optimal blocksize.
 58 *
 59 *          If LWORK = -1, then a workspace query is assumed; the routine
 60 *          only calculates the optimal size of the WORK array, returns
 61 *          this value as the first entry of the WORK array, and no error
 62 *          message related to LWORK is issued by XERBLA.
 63 *
 64 *  INFO    (output) INTEGER
 65 *          = 0:  successful exit
 66 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 67 *
 68 *  =====================================================================
 69 *
 70 *     .. Parameters ..
 71       COMPLEX*16         ZERO, ONE
 72       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ),
 73      $                   ONE = ( 1.0D+00.0D+0 ) )
 74 *     ..
 75 *     .. Local Scalars ..
 76       LOGICAL            LQUERY, UPPER
 77       INTEGER            I, IINFO, J, LWKOPT, NB
 78 *     ..
 79 *     .. External Functions ..
 80       LOGICAL            LSAME
 81       INTEGER            ILAENV
 82       EXTERNAL           LSAME, ILAENV
 83 *     ..
 84 *     .. External Subroutines ..
 85       EXTERNAL           XERBLA, ZUNGQL, ZUNGQR
 86 *     ..
 87 *     .. Intrinsic Functions ..
 88       INTRINSIC          MAX
 89 *     ..
 90 *     .. Executable Statements ..
 91 *
 92 *     Test the input arguments
 93 *
 94       INFO = 0
 95       LQUERY = ( LWORK.EQ.-1 )
 96       UPPER = LSAME( UPLO, 'U' )
 97       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 98          INFO = -1
 99       ELSE IF( N.LT.0 ) THEN
100          INFO = -2
101       ELSE IF( LDA.LT.MAX1, N ) ) THEN
102          INFO = -4
103       ELSE IF( LWORK.LT.MAX1, N-1 ) .AND. .NOT.LQUERY ) THEN
104          INFO = -7
105       END IF
106 *
107       IF( INFO.EQ.0 ) THEN
108          IF( UPPER ) THEN
109             NB = ILAENV( 1'ZUNGQL'' ', N-1, N-1, N-1-1 )
110          ELSE
111             NB = ILAENV( 1'ZUNGQR'' ', N-1, N-1, N-1-1 )
112          END IF
113          LWKOPT = MAX1, N-1 )*NB
114          WORK( 1 ) = LWKOPT
115       END IF
116 *
117       IF( INFO.NE.0 ) THEN
118          CALL XERBLA( 'ZUNGTR'-INFO )
119          RETURN
120       ELSE IF( LQUERY ) THEN
121          RETURN
122       END IF
123 *
124 *     Quick return if possible
125 *
126       IF( N.EQ.0 ) THEN
127          WORK( 1 ) = 1
128          RETURN
129       END IF
130 *
131       IF( UPPER ) THEN
132 *
133 *        Q was determined by a call to ZHETRD with UPLO = 'U'
134 *
135 *        Shift the vectors which define the elementary reflectors one
136 *        column to the left, and set the last row and column of Q to
137 *        those of the unit matrix
138 *
139          DO 20 J = 1, N - 1
140             DO 10 I = 1, J - 1
141                A( I, J ) = A( I, J+1 )
142    10       CONTINUE
143             A( N, J ) = ZERO
144    20    CONTINUE
145          DO 30 I = 1, N - 1
146             A( I, N ) = ZERO
147    30    CONTINUE
148          A( N, N ) = ONE
149 *
150 *        Generate Q(1:n-1,1:n-1)
151 *
152          CALL ZUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
153 *
154       ELSE
155 *
156 *        Q was determined by a call to ZHETRD with UPLO = 'L'.
157 *
158 *        Shift the vectors which define the elementary reflectors one
159 *        column to the right, and set the first row and column of Q to
160 *        those of the unit matrix
161 *
162          DO 50 J = N, 2-1
163             A( 1, J ) = ZERO
164             DO 40 I = J + 1, N
165                A( I, J ) = A( I, J-1 )
166    40       CONTINUE
167    50    CONTINUE
168          A( 11 ) = ONE
169          DO 60 I = 2, N
170             A( I, 1 ) = ZERO
171    60    CONTINUE
172          IF( N.GT.1 ) THEN
173 *
174 *           Generate Q(2:n,2:n)
175 *
176             CALL ZUNGQR( N-1, N-1, N-1, A( 22 ), LDA, TAU, WORK,
177      $                   LWORK, IINFO )
178          END IF
179       END IF
180       WORK( 1 ) = LWKOPT
181       RETURN
182 *
183 *     End of ZUNGTR
184 *
185       END