1       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
  2      $                   LDC, WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          SIDE, TRANS, VECT
 11       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
 21 *  with
 22 *                  SIDE = 'L'     SIDE = 'R'
 23 *  TRANS = 'N':      Q * C          C * Q
 24 *  TRANS = 'C':      Q**H * C       C * Q**H
 25 *
 26 *  If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
 27 *  with
 28 *                  SIDE = 'L'     SIDE = 'R'
 29 *  TRANS = 'N':      P * C          C * P
 30 *  TRANS = 'C':      P**H * C       C * P**H
 31 *
 32 *  Here Q and P**H are the unitary matrices determined by ZGEBRD when
 33 *  reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
 34 *  and P**H are defined as products of elementary reflectors H(i) and
 35 *  G(i) respectively.
 36 *
 37 *  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
 38 *  order of the unitary matrix Q or P**H that is applied.
 39 *
 40 *  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 41 *  if nq >= k, Q = H(1) H(2) . . . H(k);
 42 *  if nq < k, Q = H(1) H(2) . . . H(nq-1).
 43 *
 44 *  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 45 *  if k < nq, P = G(1) G(2) . . . G(k);
 46 *  if k >= nq, P = G(1) G(2) . . . G(nq-1).
 47 *
 48 *  Arguments
 49 *  =========
 50 *
 51 *  VECT    (input) CHARACTER*1
 52 *          = 'Q': apply Q or Q**H;
 53 *          = 'P': apply P or P**H.
 54 *
 55 *  SIDE    (input) CHARACTER*1
 56 *          = 'L': apply Q, Q**H, P or P**H from the Left;
 57 *          = 'R': apply Q, Q**H, P or P**H from the Right.
 58 *
 59 *  TRANS   (input) CHARACTER*1
 60 *          = 'N':  No transpose, apply Q or P;
 61 *          = 'C':  Conjugate transpose, apply Q**H or P**H.
 62 *
 63 *  M       (input) INTEGER
 64 *          The number of rows of the matrix C. M >= 0.
 65 *
 66 *  N       (input) INTEGER
 67 *          The number of columns of the matrix C. N >= 0.
 68 *
 69 *  K       (input) INTEGER
 70 *          If VECT = 'Q', the number of columns in the original
 71 *          matrix reduced by ZGEBRD.
 72 *          If VECT = 'P', the number of rows in the original
 73 *          matrix reduced by ZGEBRD.
 74 *          K >= 0.
 75 *
 76 *  A       (input) COMPLEX*16 array, dimension
 77 *                                (LDA,min(nq,K)) if VECT = 'Q'
 78 *                                (LDA,nq)        if VECT = 'P'
 79 *          The vectors which define the elementary reflectors H(i) and
 80 *          G(i), whose products determine the matrices Q and P, as
 81 *          returned by ZGEBRD.
 82 *
 83 *  LDA     (input) INTEGER
 84 *          The leading dimension of the array A.
 85 *          If VECT = 'Q', LDA >= max(1,nq);
 86 *          if VECT = 'P', LDA >= max(1,min(nq,K)).
 87 *
 88 *  TAU     (input) COMPLEX*16 array, dimension (min(nq,K))
 89 *          TAU(i) must contain the scalar factor of the elementary
 90 *          reflector H(i) or G(i) which determines Q or P, as returned
 91 *          by ZGEBRD in the array argument TAUQ or TAUP.
 92 *
 93 *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
 94 *          On entry, the M-by-N matrix C.
 95 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
 96 *          or P*C or P**H*C or C*P or C*P**H.
 97 *
 98 *  LDC     (input) INTEGER
 99 *          The leading dimension of the array C. LDC >= max(1,M).
100 *
101 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
102 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
103 *
104 *  LWORK   (input) INTEGER
105 *          The dimension of the array WORK.
106 *          If SIDE = 'L', LWORK >= max(1,N);
107 *          if SIDE = 'R', LWORK >= max(1,M);
108 *          if N = 0 or M = 0, LWORK >= 1.
109 *          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
110 *          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
111 *          optimal blocksize. (NB = 0 if M = 0 or N = 0.)
112 *
113 *          If LWORK = -1, then a workspace query is assumed; the routine
114 *          only calculates the optimal size of the WORK array, returns
115 *          this value as the first entry of the WORK array, and no error
116 *          message related to LWORK is issued by XERBLA.
117 *
118 *  INFO    (output) INTEGER
119 *          = 0:  successful exit
120 *          < 0:  if INFO = -i, the i-th argument had an illegal value
121 *
122 *  =====================================================================
123 *
124 *     .. Local Scalars ..
125       LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
126       CHARACTER          TRANST
127       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
128 *     ..
129 *     .. External Functions ..
130       LOGICAL            LSAME
131       INTEGER            ILAENV
132       EXTERNAL           LSAME, ILAENV
133 *     ..
134 *     .. External Subroutines ..
135       EXTERNAL           XERBLA, ZUNMLQ, ZUNMQR
136 *     ..
137 *     .. Intrinsic Functions ..
138       INTRINSIC          MAXMIN
139 *     ..
140 *     .. Executable Statements ..
141 *
142 *     Test the input arguments
143 *
144       INFO = 0
145       APPLYQ = LSAME( VECT, 'Q' )
146       LEFT = LSAME( SIDE, 'L' )
147       NOTRAN = LSAME( TRANS, 'N' )
148       LQUERY = ( LWORK.EQ.-1 )
149 *
150 *     NQ is the order of Q or P and NW is the minimum dimension of WORK
151 *
152       IF( LEFT ) THEN
153          NQ = M
154          NW = N
155       ELSE
156          NQ = N
157          NW = M
158       END IF
159       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
160          NW = 0
161       END IF
162       IF.NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
163          INFO = -1
164       ELSE IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
165          INFO = -2
166       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
167          INFO = -3
168       ELSE IF( M.LT.0 ) THEN
169          INFO = -4
170       ELSE IF( N.LT.0 ) THEN
171          INFO = -5
172       ELSE IF( K.LT.0 ) THEN
173          INFO = -6
174       ELSE IF( ( APPLYQ .AND. LDA.LT.MAX1, NQ ) ) .OR.
175      $         ( .NOT.APPLYQ .AND. LDA.LT.MAX1MIN( NQ, K ) ) ) )
176      $          THEN
177          INFO = -8
178       ELSE IF( LDC.LT.MAX1, M ) ) THEN
179          INFO = -11
180       ELSE IF( LWORK.LT.MAX1, NW ) .AND. .NOT.LQUERY ) THEN
181          INFO = -13
182       END IF
183 *
184       IF( INFO.EQ.0 ) THEN
185          IF( NW.GT.0 ) THEN
186             IF( APPLYQ ) THEN
187                IF( LEFT ) THEN
188                   NB = ILAENV( 1'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
189      $                 -1 )
190                ELSE
191                   NB = ILAENV( 1'ZUNMQR', SIDE // TRANS, M, N-1, N-1,
192      $                 -1 )
193                END IF
194             ELSE
195                IF( LEFT ) THEN
196                   NB = ILAENV( 1'ZUNMLQ', SIDE // TRANS, M-1, N, M-1,
197      $                 -1 )
198                ELSE
199                   NB = ILAENV( 1'ZUNMLQ', SIDE // TRANS, M, N-1, N-1,
200      $                 -1 )
201                END IF
202             END IF
203             LWKOPT = MAX1, NW*NB )
204          ELSE
205             LWKOPT = 1
206          END IF
207          WORK( 1 ) = LWKOPT
208       END IF
209 *
210       IF( INFO.NE.0 ) THEN
211          CALL XERBLA( 'ZUNMBR'-INFO )
212          RETURN
213       ELSE IF( LQUERY ) THEN
214          RETURN
215       END IF
216 *
217 *     Quick return if possible
218 *
219       IF( M.EQ.0 .OR. N.EQ.0 )
220      $   RETURN
221 *
222       IF( APPLYQ ) THEN
223 *
224 *        Apply Q
225 *
226          IF( NQ.GE.K ) THEN
227 *
228 *           Q was determined by a call to ZGEBRD with nq >= k
229 *
230             CALL ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
231      $                   WORK, LWORK, IINFO )
232          ELSE IF( NQ.GT.1 ) THEN
233 *
234 *           Q was determined by a call to ZGEBRD with nq < k
235 *
236             IF( LEFT ) THEN
237                MI = M - 1
238                NI = N
239                I1 = 2
240                I2 = 1
241             ELSE
242                MI = M
243                NI = N - 1
244                I1 = 1
245                I2 = 2
246             END IF
247             CALL ZUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 21 ), LDA, TAU,
248      $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
249          END IF
250       ELSE
251 *
252 *        Apply P
253 *
254          IF( NOTRAN ) THEN
255             TRANST = 'C'
256          ELSE
257             TRANST = 'N'
258          END IF
259          IF( NQ.GT.K ) THEN
260 *
261 *           P was determined by a call to ZGEBRD with nq > k
262 *
263             CALL ZUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
264      $                   WORK, LWORK, IINFO )
265          ELSE IF( NQ.GT.1 ) THEN
266 *
267 *           P was determined by a call to ZGEBRD with nq <= k
268 *
269             IF( LEFT ) THEN
270                MI = M - 1
271                NI = N
272                I1 = 2
273                I2 = 1
274             ELSE
275                MI = M
276                NI = N - 1
277                I1 = 1
278                I2 = 2
279             END IF
280             CALL ZUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 12 ), LDA,
281      $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
282          END IF
283       END IF
284       WORK( 1 ) = LWKOPT
285       RETURN
286 *
287 *     End of ZUNMBR
288 *
289       END