1 SUBROUTINE ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
2 $ WORK, INFO )
3 *
4 * -- LAPACK routine (version 3.3.1) --
5 * -- LAPACK is a software package provided by Univ. of Tennessee, --
6 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 * -- April 2011 --
8 *
9 * .. Scalar Arguments ..
10 CHARACTER SIDE, TRANS
11 INTEGER INFO, K, LDA, LDC, M, N
12 * ..
13 * .. Array Arguments ..
14 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15 * ..
16 *
17 * Purpose
18 * =======
19 *
20 * ZUNMR2 overwrites the general complex m-by-n matrix C with
21 *
22 * Q * C if SIDE = 'L' and TRANS = 'N', or
23 *
24 * Q**H* C if SIDE = 'L' and TRANS = 'C', or
25 *
26 * C * Q if SIDE = 'R' and TRANS = 'N', or
27 *
28 * C * Q**H if SIDE = 'R' and TRANS = 'C',
29 *
30 * where Q is a complex unitary matrix defined as the product of k
31 * elementary reflectors
32 *
33 * Q = H(1)**H H(2)**H . . . H(k)**H
34 *
35 * as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n
36 * if SIDE = 'R'.
37 *
38 * Arguments
39 * =========
40 *
41 * SIDE (input) CHARACTER*1
42 * = 'L': apply Q or Q**H from the Left
43 * = 'R': apply Q or Q**H from the Right
44 *
45 * TRANS (input) CHARACTER*1
46 * = 'N': apply Q (No transpose)
47 * = 'C': apply Q**H (Conjugate transpose)
48 *
49 * M (input) INTEGER
50 * The number of rows of the matrix C. M >= 0.
51 *
52 * N (input) INTEGER
53 * The number of columns of the matrix C. N >= 0.
54 *
55 * K (input) INTEGER
56 * The number of elementary reflectors whose product defines
57 * the matrix Q.
58 * If SIDE = 'L', M >= K >= 0;
59 * if SIDE = 'R', N >= K >= 0.
60 *
61 * A (input) COMPLEX*16 array, dimension
62 * (LDA,M) if SIDE = 'L',
63 * (LDA,N) if SIDE = 'R'
64 * The i-th row must contain the vector which defines the
65 * elementary reflector H(i), for i = 1,2,...,k, as returned by
66 * ZGERQF in the last k rows of its array argument A.
67 * A is modified by the routine but restored on exit.
68 *
69 * LDA (input) INTEGER
70 * The leading dimension of the array A. LDA >= max(1,K).
71 *
72 * TAU (input) COMPLEX*16 array, dimension (K)
73 * TAU(i) must contain the scalar factor of the elementary
74 * reflector H(i), as returned by ZGERQF.
75 *
76 * C (input/output) COMPLEX*16 array, dimension (LDC,N)
77 * On entry, the m-by-n matrix C.
78 * On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
79 *
80 * LDC (input) INTEGER
81 * The leading dimension of the array C. LDC >= max(1,M).
82 *
83 * WORK (workspace) COMPLEX*16 array, dimension
84 * (N) if SIDE = 'L',
85 * (M) if SIDE = 'R'
86 *
87 * INFO (output) INTEGER
88 * = 0: successful exit
89 * < 0: if INFO = -i, the i-th argument had an illegal value
90 *
91 * =====================================================================
92 *
93 * .. Parameters ..
94 COMPLEX*16 ONE
95 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
96 * ..
97 * .. Local Scalars ..
98 LOGICAL LEFT, NOTRAN
99 INTEGER I, I1, I2, I3, MI, NI, NQ
100 COMPLEX*16 AII, TAUI
101 * ..
102 * .. External Functions ..
103 LOGICAL LSAME
104 EXTERNAL LSAME
105 * ..
106 * .. External Subroutines ..
107 EXTERNAL XERBLA, ZLACGV, ZLARF
108 * ..
109 * .. Intrinsic Functions ..
110 INTRINSIC DCONJG, MAX
111 * ..
112 * .. Executable Statements ..
113 *
114 * Test the input arguments
115 *
116 INFO = 0
117 LEFT = LSAME( SIDE, 'L' )
118 NOTRAN = LSAME( TRANS, 'N' )
119 *
120 * NQ is the order of Q
121 *
122 IF( LEFT ) THEN
123 NQ = M
124 ELSE
125 NQ = N
126 END IF
127 IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
128 INFO = -1
129 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
130 INFO = -2
131 ELSE IF( M.LT.0 ) THEN
132 INFO = -3
133 ELSE IF( N.LT.0 ) THEN
134 INFO = -4
135 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
136 INFO = -5
137 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
138 INFO = -7
139 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
140 INFO = -10
141 END IF
142 IF( INFO.NE.0 ) THEN
143 CALL XERBLA( 'ZUNMR2', -INFO )
144 RETURN
145 END IF
146 *
147 * Quick return if possible
148 *
149 IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
150 $ RETURN
151 *
152 IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
153 I1 = 1
154 I2 = K
155 I3 = 1
156 ELSE
157 I1 = K
158 I2 = 1
159 I3 = -1
160 END IF
161 *
162 IF( LEFT ) THEN
163 NI = N
164 ELSE
165 MI = M
166 END IF
167 *
168 DO 10 I = I1, I2, I3
169 IF( LEFT ) THEN
170 *
171 * H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
172 *
173 MI = M - K + I
174 ELSE
175 *
176 * H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
177 *
178 NI = N - K + I
179 END IF
180 *
181 * Apply H(i) or H(i)**H
182 *
183 IF( NOTRAN ) THEN
184 TAUI = DCONJG( TAU( I ) )
185 ELSE
186 TAUI = TAU( I )
187 END IF
188 CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
189 AII = A( I, NQ-K+I )
190 A( I, NQ-K+I ) = ONE
191 CALL ZLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAUI, C, LDC, WORK )
192 A( I, NQ-K+I ) = AII
193 CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
194 10 CONTINUE
195 RETURN
196 *
197 * End of ZUNMR2
198 *
199 END
2 $ WORK, INFO )
3 *
4 * -- LAPACK routine (version 3.3.1) --
5 * -- LAPACK is a software package provided by Univ. of Tennessee, --
6 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 * -- April 2011 --
8 *
9 * .. Scalar Arguments ..
10 CHARACTER SIDE, TRANS
11 INTEGER INFO, K, LDA, LDC, M, N
12 * ..
13 * .. Array Arguments ..
14 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15 * ..
16 *
17 * Purpose
18 * =======
19 *
20 * ZUNMR2 overwrites the general complex m-by-n matrix C with
21 *
22 * Q * C if SIDE = 'L' and TRANS = 'N', or
23 *
24 * Q**H* C if SIDE = 'L' and TRANS = 'C', or
25 *
26 * C * Q if SIDE = 'R' and TRANS = 'N', or
27 *
28 * C * Q**H if SIDE = 'R' and TRANS = 'C',
29 *
30 * where Q is a complex unitary matrix defined as the product of k
31 * elementary reflectors
32 *
33 * Q = H(1)**H H(2)**H . . . H(k)**H
34 *
35 * as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n
36 * if SIDE = 'R'.
37 *
38 * Arguments
39 * =========
40 *
41 * SIDE (input) CHARACTER*1
42 * = 'L': apply Q or Q**H from the Left
43 * = 'R': apply Q or Q**H from the Right
44 *
45 * TRANS (input) CHARACTER*1
46 * = 'N': apply Q (No transpose)
47 * = 'C': apply Q**H (Conjugate transpose)
48 *
49 * M (input) INTEGER
50 * The number of rows of the matrix C. M >= 0.
51 *
52 * N (input) INTEGER
53 * The number of columns of the matrix C. N >= 0.
54 *
55 * K (input) INTEGER
56 * The number of elementary reflectors whose product defines
57 * the matrix Q.
58 * If SIDE = 'L', M >= K >= 0;
59 * if SIDE = 'R', N >= K >= 0.
60 *
61 * A (input) COMPLEX*16 array, dimension
62 * (LDA,M) if SIDE = 'L',
63 * (LDA,N) if SIDE = 'R'
64 * The i-th row must contain the vector which defines the
65 * elementary reflector H(i), for i = 1,2,...,k, as returned by
66 * ZGERQF in the last k rows of its array argument A.
67 * A is modified by the routine but restored on exit.
68 *
69 * LDA (input) INTEGER
70 * The leading dimension of the array A. LDA >= max(1,K).
71 *
72 * TAU (input) COMPLEX*16 array, dimension (K)
73 * TAU(i) must contain the scalar factor of the elementary
74 * reflector H(i), as returned by ZGERQF.
75 *
76 * C (input/output) COMPLEX*16 array, dimension (LDC,N)
77 * On entry, the m-by-n matrix C.
78 * On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
79 *
80 * LDC (input) INTEGER
81 * The leading dimension of the array C. LDC >= max(1,M).
82 *
83 * WORK (workspace) COMPLEX*16 array, dimension
84 * (N) if SIDE = 'L',
85 * (M) if SIDE = 'R'
86 *
87 * INFO (output) INTEGER
88 * = 0: successful exit
89 * < 0: if INFO = -i, the i-th argument had an illegal value
90 *
91 * =====================================================================
92 *
93 * .. Parameters ..
94 COMPLEX*16 ONE
95 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
96 * ..
97 * .. Local Scalars ..
98 LOGICAL LEFT, NOTRAN
99 INTEGER I, I1, I2, I3, MI, NI, NQ
100 COMPLEX*16 AII, TAUI
101 * ..
102 * .. External Functions ..
103 LOGICAL LSAME
104 EXTERNAL LSAME
105 * ..
106 * .. External Subroutines ..
107 EXTERNAL XERBLA, ZLACGV, ZLARF
108 * ..
109 * .. Intrinsic Functions ..
110 INTRINSIC DCONJG, MAX
111 * ..
112 * .. Executable Statements ..
113 *
114 * Test the input arguments
115 *
116 INFO = 0
117 LEFT = LSAME( SIDE, 'L' )
118 NOTRAN = LSAME( TRANS, 'N' )
119 *
120 * NQ is the order of Q
121 *
122 IF( LEFT ) THEN
123 NQ = M
124 ELSE
125 NQ = N
126 END IF
127 IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
128 INFO = -1
129 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
130 INFO = -2
131 ELSE IF( M.LT.0 ) THEN
132 INFO = -3
133 ELSE IF( N.LT.0 ) THEN
134 INFO = -4
135 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
136 INFO = -5
137 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
138 INFO = -7
139 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
140 INFO = -10
141 END IF
142 IF( INFO.NE.0 ) THEN
143 CALL XERBLA( 'ZUNMR2', -INFO )
144 RETURN
145 END IF
146 *
147 * Quick return if possible
148 *
149 IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
150 $ RETURN
151 *
152 IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
153 I1 = 1
154 I2 = K
155 I3 = 1
156 ELSE
157 I1 = K
158 I2 = 1
159 I3 = -1
160 END IF
161 *
162 IF( LEFT ) THEN
163 NI = N
164 ELSE
165 MI = M
166 END IF
167 *
168 DO 10 I = I1, I2, I3
169 IF( LEFT ) THEN
170 *
171 * H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
172 *
173 MI = M - K + I
174 ELSE
175 *
176 * H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
177 *
178 NI = N - K + I
179 END IF
180 *
181 * Apply H(i) or H(i)**H
182 *
183 IF( NOTRAN ) THEN
184 TAUI = DCONJG( TAU( I ) )
185 ELSE
186 TAUI = TAU( I )
187 END IF
188 CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
189 AII = A( I, NQ-K+I )
190 A( I, NQ-K+I ) = ONE
191 CALL ZLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAUI, C, LDC, WORK )
192 A( I, NQ-K+I ) = AII
193 CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
194 10 CONTINUE
195 RETURN
196 *
197 * End of ZUNMR2
198 *
199 END