1       SUBROUTINE ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  2      $                   WORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          SIDE, TRANS
 11       INTEGER            INFO, K, LDA, LDC, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZUNMR2 overwrites the general complex m-by-n matrix C with
 21 *
 22 *        Q * C  if SIDE = 'L' and TRANS = 'N', or
 23 *
 24 *        Q**H* C  if SIDE = 'L' and TRANS = 'C', or
 25 *
 26 *        C * Q  if SIDE = 'R' and TRANS = 'N', or
 27 *
 28 *        C * Q**H if SIDE = 'R' and TRANS = 'C',
 29 *
 30 *  where Q is a complex unitary matrix defined as the product of k
 31 *  elementary reflectors
 32 *
 33 *        Q = H(1)**H H(2)**H . . . H(k)**H
 34 *
 35 *  as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n
 36 *  if SIDE = 'R'.
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *  SIDE    (input) CHARACTER*1
 42 *          = 'L': apply Q or Q**H from the Left
 43 *          = 'R': apply Q or Q**H from the Right
 44 *
 45 *  TRANS   (input) CHARACTER*1
 46 *          = 'N': apply Q  (No transpose)
 47 *          = 'C': apply Q**H (Conjugate transpose)
 48 *
 49 *  M       (input) INTEGER
 50 *          The number of rows of the matrix C. M >= 0.
 51 *
 52 *  N       (input) INTEGER
 53 *          The number of columns of the matrix C. N >= 0.
 54 *
 55 *  K       (input) INTEGER
 56 *          The number of elementary reflectors whose product defines
 57 *          the matrix Q.
 58 *          If SIDE = 'L', M >= K >= 0;
 59 *          if SIDE = 'R', N >= K >= 0.
 60 *
 61 *  A       (input) COMPLEX*16 array, dimension
 62 *                               (LDA,M) if SIDE = 'L',
 63 *                               (LDA,N) if SIDE = 'R'
 64 *          The i-th row must contain the vector which defines the
 65 *          elementary reflector H(i), for i = 1,2,...,k, as returned by
 66 *          ZGERQF in the last k rows of its array argument A.
 67 *          A is modified by the routine but restored on exit.
 68 *
 69 *  LDA     (input) INTEGER
 70 *          The leading dimension of the array A. LDA >= max(1,K).
 71 *
 72 *  TAU     (input) COMPLEX*16 array, dimension (K)
 73 *          TAU(i) must contain the scalar factor of the elementary
 74 *          reflector H(i), as returned by ZGERQF.
 75 *
 76 *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
 77 *          On entry, the m-by-n matrix C.
 78 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
 79 *
 80 *  LDC     (input) INTEGER
 81 *          The leading dimension of the array C. LDC >= max(1,M).
 82 *
 83 *  WORK    (workspace) COMPLEX*16 array, dimension
 84 *                                   (N) if SIDE = 'L',
 85 *                                   (M) if SIDE = 'R'
 86 *
 87 *  INFO    (output) INTEGER
 88 *          = 0: successful exit
 89 *          < 0: if INFO = -i, the i-th argument had an illegal value
 90 *
 91 *  =====================================================================
 92 *
 93 *     .. Parameters ..
 94       COMPLEX*16         ONE
 95       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
 96 *     ..
 97 *     .. Local Scalars ..
 98       LOGICAL            LEFT, NOTRAN
 99       INTEGER            I, I1, I2, I3, MI, NI, NQ
100       COMPLEX*16         AII, TAUI
101 *     ..
102 *     .. External Functions ..
103       LOGICAL            LSAME
104       EXTERNAL           LSAME
105 *     ..
106 *     .. External Subroutines ..
107       EXTERNAL           XERBLA, ZLACGV, ZLARF
108 *     ..
109 *     .. Intrinsic Functions ..
110       INTRINSIC          DCONJGMAX
111 *     ..
112 *     .. Executable Statements ..
113 *
114 *     Test the input arguments
115 *
116       INFO = 0
117       LEFT = LSAME( SIDE, 'L' )
118       NOTRAN = LSAME( TRANS, 'N' )
119 *
120 *     NQ is the order of Q
121 *
122       IF( LEFT ) THEN
123          NQ = M
124       ELSE
125          NQ = N
126       END IF
127       IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
128          INFO = -1
129       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
130          INFO = -2
131       ELSE IF( M.LT.0 ) THEN
132          INFO = -3
133       ELSE IF( N.LT.0 ) THEN
134          INFO = -4
135       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
136          INFO = -5
137       ELSE IF( LDA.LT.MAX1, K ) ) THEN
138          INFO = -7
139       ELSE IF( LDC.LT.MAX1, M ) ) THEN
140          INFO = -10
141       END IF
142       IF( INFO.NE.0 ) THEN
143          CALL XERBLA( 'ZUNMR2'-INFO )
144          RETURN
145       END IF
146 *
147 *     Quick return if possible
148 *
149       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
150      $   RETURN
151 *
152       IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
153          I1 = 1
154          I2 = K
155          I3 = 1
156       ELSE
157          I1 = K
158          I2 = 1
159          I3 = -1
160       END IF
161 *
162       IF( LEFT ) THEN
163          NI = N
164       ELSE
165          MI = M
166       END IF
167 *
168       DO 10 I = I1, I2, I3
169          IF( LEFT ) THEN
170 *
171 *           H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
172 *
173             MI = M - K + I
174          ELSE
175 *
176 *           H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
177 *
178             NI = N - K + I
179          END IF
180 *
181 *        Apply H(i) or H(i)**H
182 *
183          IF( NOTRAN ) THEN
184             TAUI = DCONJG( TAU( I ) )
185          ELSE
186             TAUI = TAU( I )
187          END IF
188          CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
189          AII = A( I, NQ-K+I )
190          A( I, NQ-K+I ) = ONE
191          CALL ZLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAUI, C, LDC, WORK )
192          A( I, NQ-K+I ) = AII
193          CALL ZLACGV( NQ-K+I-1, A( I, 1 ), LDA )
194    10 CONTINUE
195       RETURN
196 *
197 *     End of ZUNMR2
198 *
199       END