1       SUBROUTINE ZUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  2      $                   WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          SIDE, TRANS
 11       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZUNMRQ overwrites the general complex M-by-N matrix C with
 21 *
 22 *                  SIDE = 'L'     SIDE = 'R'
 23 *  TRANS = 'N':      Q * C          C * Q
 24 *  TRANS = 'C':      Q**H * C       C * Q**H
 25 *
 26 *  where Q is a complex unitary matrix defined as the product of k
 27 *  elementary reflectors
 28 *
 29 *        Q = H(1)**H H(2)**H . . . H(k)**H
 30 *
 31 *  as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N
 32 *  if SIDE = 'R'.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  SIDE    (input) CHARACTER*1
 38 *          = 'L': apply Q or Q**H from the Left;
 39 *          = 'R': apply Q or Q**H from the Right.
 40 *
 41 *  TRANS   (input) CHARACTER*1
 42 *          = 'N':  No transpose, apply Q;
 43 *          = 'C':  Transpose, apply Q**H.
 44 *
 45 *  M       (input) INTEGER
 46 *          The number of rows of the matrix C. M >= 0.
 47 *
 48 *  N       (input) INTEGER
 49 *          The number of columns of the matrix C. N >= 0.
 50 *
 51 *  K       (input) INTEGER
 52 *          The number of elementary reflectors whose product defines
 53 *          the matrix Q.
 54 *          If SIDE = 'L', M >= K >= 0;
 55 *          if SIDE = 'R', N >= K >= 0.
 56 *
 57 *  A       (input) COMPLEX*16 array, dimension
 58 *                               (LDA,M) if SIDE = 'L',
 59 *                               (LDA,N) if SIDE = 'R'
 60 *          The i-th row must contain the vector which defines the
 61 *          elementary reflector H(i), for i = 1,2,...,k, as returned by
 62 *          ZGERQF in the last k rows of its array argument A.
 63 *          A is modified by the routine but restored on exit.
 64 *
 65 *  LDA     (input) INTEGER
 66 *          The leading dimension of the array A. LDA >= max(1,K).
 67 *
 68 *  TAU     (input) COMPLEX*16 array, dimension (K)
 69 *          TAU(i) must contain the scalar factor of the elementary
 70 *          reflector H(i), as returned by ZGERQF.
 71 *
 72 *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
 73 *          On entry, the M-by-N matrix C.
 74 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
 75 *
 76 *  LDC     (input) INTEGER
 77 *          The leading dimension of the array C. LDC >= max(1,M).
 78 *
 79 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 80 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 81 *
 82 *  LWORK   (input) INTEGER
 83 *          The dimension of the array WORK.
 84 *          If SIDE = 'L', LWORK >= max(1,N);
 85 *          if SIDE = 'R', LWORK >= max(1,M).
 86 *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
 87 *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
 88 *          blocksize.
 89 *
 90 *          If LWORK = -1, then a workspace query is assumed; the routine
 91 *          only calculates the optimal size of the WORK array, returns
 92 *          this value as the first entry of the WORK array, and no error
 93 *          message related to LWORK is issued by XERBLA.
 94 *
 95 *  INFO    (output) INTEGER
 96 *          = 0:  successful exit
 97 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 98 *
 99 *  =====================================================================
100 *
101 *     .. Parameters ..
102       INTEGER            NBMAX, LDT
103       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
104 *     ..
105 *     .. Local Scalars ..
106       LOGICAL            LEFT, LQUERY, NOTRAN
107       CHARACTER          TRANST
108       INTEGER            I, I1, I2, I3, IB, IINFO, IWS, LDWORK, LWKOPT,
109      $                   MI, NB, NBMIN, NI, NQ, NW
110 *     ..
111 *     .. Local Arrays ..
112       COMPLEX*16         T( LDT, NBMAX )
113 *     ..
114 *     .. External Functions ..
115       LOGICAL            LSAME
116       INTEGER            ILAENV
117       EXTERNAL           LSAME, ILAENV
118 *     ..
119 *     .. External Subroutines ..
120       EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNMR2
121 *     ..
122 *     .. Intrinsic Functions ..
123       INTRINSIC          MAXMIN
124 *     ..
125 *     .. Executable Statements ..
126 *
127 *     Test the input arguments
128 *
129       INFO = 0
130       LEFT = LSAME( SIDE, 'L' )
131       NOTRAN = LSAME( TRANS, 'N' )
132       LQUERY = ( LWORK.EQ.-1 )
133 *
134 *     NQ is the order of Q and NW is the minimum dimension of WORK
135 *
136       IF( LEFT ) THEN
137          NQ = M
138          NW = MAX1, N )
139       ELSE
140          NQ = N
141          NW = MAX1, M )
142       END IF
143       IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
144          INFO = -1
145       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
146          INFO = -2
147       ELSE IF( M.LT.0 ) THEN
148          INFO = -3
149       ELSE IF( N.LT.0 ) THEN
150          INFO = -4
151       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
152          INFO = -5
153       ELSE IF( LDA.LT.MAX1, K ) ) THEN
154          INFO = -7
155       ELSE IF( LDC.LT.MAX1, M ) ) THEN
156          INFO = -10
157       END IF
158 *
159       IF( INFO.EQ.0 ) THEN
160          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
161             LWKOPT = 1
162          ELSE
163 *
164 *           Determine the block size.  NB may be at most NBMAX, where
165 *           NBMAX is used to define the local array T.
166 *
167             NB = MIN( NBMAX, ILAENV( 1'ZUNMRQ', SIDE // TRANS, M, N,
168      $                               K, -1 ) )
169             LWKOPT = NW*NB
170          END IF
171          WORK( 1 ) = LWKOPT
172 *
173          IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
174             INFO = -12
175          END IF
176       END IF
177 *
178       IF( INFO.NE.0 ) THEN
179          CALL XERBLA( 'ZUNMRQ'-INFO )
180          RETURN
181       ELSE IF( LQUERY ) THEN
182          RETURN
183       END IF
184 *
185 *     Quick return if possible
186 *
187       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
188          RETURN
189       END IF
190 *
191       NBMIN = 2
192       LDWORK = NW
193       IF( NB.GT.1 .AND. NB.LT.K ) THEN
194          IWS = NW*NB
195          IF( LWORK.LT.IWS ) THEN
196             NB = LWORK / LDWORK
197             NBMIN = MAX2, ILAENV( 2'ZUNMRQ', SIDE // TRANS, M, N, K,
198      $              -1 ) )
199          END IF
200       ELSE
201          IWS = NW
202       END IF
203 *
204       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
205 *
206 *        Use unblocked code
207 *
208          CALL ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
209      $                IINFO )
210       ELSE
211 *
212 *        Use blocked code
213 *
214          IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
215      $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
216             I1 = 1
217             I2 = K
218             I3 = NB
219          ELSE
220             I1 = ( ( K-1 ) / NB )*NB + 1
221             I2 = 1
222             I3 = -NB
223          END IF
224 *
225          IF( LEFT ) THEN
226             NI = N
227          ELSE
228             MI = M
229          END IF
230 *
231          IF( NOTRAN ) THEN
232             TRANST = 'C'
233          ELSE
234             TRANST = 'N'
235          END IF
236 *
237          DO 10 I = I1, I2, I3
238             IB = MIN( NB, K-I+1 )
239 *
240 *           Form the triangular factor of the block reflector
241 *           H = H(i+ib-1) . . . H(i+1) H(i)
242 *
243             CALL ZLARFT( 'Backward''Rowwise', NQ-K+I+IB-1, IB,
244      $                   A( I, 1 ), LDA, TAU( I ), T, LDT )
245             IF( LEFT ) THEN
246 *
247 *              H or H**H is applied to C(1:m-k+i+ib-1,1:n)
248 *
249                MI = M - K + I + IB - 1
250             ELSE
251 *
252 *              H or H**H is applied to C(1:m,1:n-k+i+ib-1)
253 *
254                NI = N - K + I + IB - 1
255             END IF
256 *
257 *           Apply H or H**H
258 *
259             CALL ZLARFB( SIDE, TRANST, 'Backward''Rowwise', MI, NI,
260      $                   IB, A( I, 1 ), LDA, T, LDT, C, LDC, WORK,
261      $                   LDWORK )
262    10    CONTINUE
263       END IF
264       WORK( 1 ) = LWKOPT
265       RETURN
266 *
267 *     End of ZUNMRQ
268 *
269       END