1       SUBROUTINE DBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
  2      $                   RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            KD, LDA, LDPT, LDQ, M, N
 10       DOUBLE PRECISION   RESID
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
 14      $                   Q( LDQ, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DBDT01 reconstructs a general matrix A from its bidiagonal form
 21 *     A = Q * B * P'
 22 *  where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
 23 *  matrices and B is bidiagonal.
 24 *
 25 *  The test ratio to test the reduction is
 26 *     RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
 27 *  where PT = P' and EPS is the machine precision.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  M       (input) INTEGER
 33 *          The number of rows of the matrices A and Q.
 34 *
 35 *  N       (input) INTEGER
 36 *          The number of columns of the matrices A and P'.
 37 *
 38 *  KD      (input) INTEGER
 39 *          If KD = 0, B is diagonal and the array E is not referenced.
 40 *          If KD = 1, the reduction was performed by xGEBRD; B is upper
 41 *          bidiagonal if M >= N, and lower bidiagonal if M < N.
 42 *          If KD = -1, the reduction was performed by xGBBRD; B is
 43 *          always upper bidiagonal.
 44 *
 45 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 46 *          The m by n matrix A.
 47 *
 48 *  LDA     (input) INTEGER
 49 *          The leading dimension of the array A.  LDA >= max(1,M).
 50 *
 51 *  Q       (input) DOUBLE PRECISION array, dimension (LDQ,N)
 52 *          The m by min(m,n) orthogonal matrix Q in the reduction
 53 *          A = Q * B * P'.
 54 *
 55 *  LDQ     (input) INTEGER
 56 *          The leading dimension of the array Q.  LDQ >= max(1,M).
 57 *
 58 *  D       (input) DOUBLE PRECISION array, dimension (min(M,N))
 59 *          The diagonal elements of the bidiagonal matrix B.
 60 *
 61 *  E       (input) DOUBLE PRECISION array, dimension (min(M,N)-1)
 62 *          The superdiagonal elements of the bidiagonal matrix B if
 63 *          m >= n, or the subdiagonal elements of B if m < n.
 64 *
 65 *  PT      (input) DOUBLE PRECISION array, dimension (LDPT,N)
 66 *          The min(m,n) by n orthogonal matrix P' in the reduction
 67 *          A = Q * B * P'.
 68 *
 69 *  LDPT    (input) INTEGER
 70 *          The leading dimension of the array PT.
 71 *          LDPT >= max(1,min(M,N)).
 72 *
 73 *  WORK    (workspace) DOUBLE PRECISION array, dimension (M+N)
 74 *
 75 *  RESID   (output) DOUBLE PRECISION
 76 *          The test ratio:  norm(A - Q * B * P') / ( n * norm(A) * EPS )
 77 *
 78 *  =====================================================================
 79 *
 80 *     .. Parameters ..
 81       DOUBLE PRECISION   ZERO, ONE
 82       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 83 *     ..
 84 *     .. Local Scalars ..
 85       INTEGER            I, J
 86       DOUBLE PRECISION   ANORM, EPS
 87 *     ..
 88 *     .. External Functions ..
 89       DOUBLE PRECISION   DASUM, DLAMCH, DLANGE
 90       EXTERNAL           DASUM, DLAMCH, DLANGE
 91 *     ..
 92 *     .. External Subroutines ..
 93       EXTERNAL           DCOPY, DGEMV
 94 *     ..
 95 *     .. Intrinsic Functions ..
 96       INTRINSIC          DBLEMAXMIN
 97 *     ..
 98 *     .. Executable Statements ..
 99 *
100 *     Quick return if possible
101 *
102       IF( M.LE.0 .OR. N.LE.0 ) THEN
103          RESID = ZERO
104          RETURN
105       END IF
106 *
107 *     Compute A - Q * B * P' one column at a time.
108 *
109       RESID = ZERO
110       IF( KD.NE.0 ) THEN
111 *
112 *        B is bidiagonal.
113 *
114          IF( KD.NE.0 .AND. M.GE.N ) THEN
115 *
116 *           B is upper bidiagonal and M >= N.
117 *
118             DO 20 J = 1, N
119                CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
120                DO 10 I = 1, N - 1
121                   WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
122    10          CONTINUE
123                WORK( M+N ) = D( N )*PT( N, J )
124                CALL DGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
125      $                     WORK( M+1 ), 1, ONE, WORK, 1 )
126                RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
127    20       CONTINUE
128          ELSE IF( KD.LT.0 ) THEN
129 *
130 *           B is upper bidiagonal and M < N.
131 *
132             DO 40 J = 1, N
133                CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
134                DO 30 I = 1, M - 1
135                   WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
136    30          CONTINUE
137                WORK( M+M ) = D( M )*PT( M, J )
138                CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
139      $                     WORK( M+1 ), 1, ONE, WORK, 1 )
140                RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
141    40       CONTINUE
142          ELSE
143 *
144 *           B is lower bidiagonal.
145 *
146             DO 60 J = 1, N
147                CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
148                WORK( M+1 ) = D( 1 )*PT( 1, J )
149                DO 50 I = 2, M
150                   WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
151      $                          D( I )*PT( I, J )
152    50          CONTINUE
153                CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
154      $                     WORK( M+1 ), 1, ONE, WORK, 1 )
155                RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
156    60       CONTINUE
157          END IF
158       ELSE
159 *
160 *        B is diagonal.
161 *
162          IF( M.GE.N ) THEN
163             DO 80 J = 1, N
164                CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
165                DO 70 I = 1, N
166                   WORK( M+I ) = D( I )*PT( I, J )
167    70          CONTINUE
168                CALL DGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
169      $                     WORK( M+1 ), 1, ONE, WORK, 1 )
170                RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
171    80       CONTINUE
172          ELSE
173             DO 100 J = 1, N
174                CALL DCOPY( M, A( 1, J ), 1, WORK, 1 )
175                DO 90 I = 1, M
176                   WORK( M+I ) = D( I )*PT( I, J )
177    90          CONTINUE
178                CALL DGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
179      $                     WORK( M+1 ), 1, ONE, WORK, 1 )
180                RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
181   100       CONTINUE
182          END IF
183       END IF
184 *
185 *     Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
186 *
187       ANORM = DLANGE( '1', M, N, A, LDA, WORK )
188       EPS = DLAMCH( 'Precision' )
189 *
190       IF( ANORM.LE.ZERO ) THEN
191          IF( RESID.NE.ZERO )
192      $      RESID = ONE / EPS
193       ELSE
194          IF( ANORM.GE.RESID ) THEN
195             RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
196          ELSE
197             IF( ANORM.LT.ONE ) THEN
198                RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
199      $                 ( DBLE( N )*EPS )
200             ELSE
201                RESID = MIN( RESID / ANORM, DBLE( N ) ) /
202      $                 ( DBLE( N )*EPS )
203             END IF
204          END IF
205       END IF
206 *
207       RETURN
208 *
209 *     End of DBDT01
210 *
211       END