1       SUBROUTINE DLARHS( PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS,
  2      $                   A, LDA, X, LDX, B, LDB, ISEED, INFO )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          TRANS, UPLO, XTYPE
 10       CHARACTER*3        PATH
 11       INTEGER            INFO, KL, KU, LDA, LDB, LDX, M, N, NRHS
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            ISEED( 4 )
 15       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DLARHS chooses a set of NRHS random solution vectors and sets
 22 *  up the right hand sides for the linear system
 23 *     op( A ) * X = B,
 24 *  where op( A ) may be A or A' (transpose of A).
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  PATH    (input) CHARACTER*3
 30 *          The type of the real matrix A.  PATH may be given in any
 31 *          combination of upper and lower case.  Valid types include
 32 *             xGE:  General m x n matrix
 33 *             xGB:  General banded matrix
 34 *             xPO:  Symmetric positive definite, 2-D storage
 35 *             xPP:  Symmetric positive definite packed
 36 *             xPB:  Symmetric positive definite banded
 37 *             xSY:  Symmetric indefinite, 2-D storage
 38 *             xSP:  Symmetric indefinite packed
 39 *             xSB:  Symmetric indefinite banded
 40 *             xTR:  Triangular
 41 *             xTP:  Triangular packed
 42 *             xTB:  Triangular banded
 43 *             xQR:  General m x n matrix
 44 *             xLQ:  General m x n matrix
 45 *             xQL:  General m x n matrix
 46 *             xRQ:  General m x n matrix
 47 *          where the leading character indicates the precision.
 48 *
 49 *  XTYPE   (input) CHARACTER*1
 50 *          Specifies how the exact solution X will be determined:
 51 *          = 'N':  New solution; generate a random X.
 52 *          = 'C':  Computed; use value of X on entry.
 53 *
 54 *  UPLO    (input) CHARACTER*1
 55 *          Specifies whether the upper or lower triangular part of the
 56 *          matrix A is stored, if A is symmetric.
 57 *          = 'U':  Upper triangular
 58 *          = 'L':  Lower triangular
 59 *
 60 *  TRANS   (input) CHARACTER*1
 61 *          Specifies the operation applied to the matrix A.
 62 *          = 'N':  System is  A * x = b
 63 *          = 'T':  System is  A'* x = b
 64 *          = 'C':  System is  A'* x = b
 65 *
 66 *  M       (input) INTEGER
 67 *          The number or rows of the matrix A.  M >= 0.
 68 *
 69 *  N       (input) INTEGER
 70 *          The number of columns of the matrix A.  N >= 0.
 71 *
 72 *  KL      (input) INTEGER
 73 *          Used only if A is a band matrix; specifies the number of
 74 *          subdiagonals of A if A is a general band matrix or if A is
 75 *          symmetric or triangular and UPLO = 'L'; specifies the number
 76 *          of superdiagonals of A if A is symmetric or triangular and
 77 *          UPLO = 'U'.  0 <= KL <= M-1.
 78 *
 79 *  KU      (input) INTEGER
 80 *          Used only if A is a general band matrix or if A is
 81 *          triangular.
 82 *
 83 *          If PATH = xGB, specifies the number of superdiagonals of A,
 84 *          and 0 <= KU <= N-1.
 85 *
 86 *          If PATH = xTR, xTP, or xTB, specifies whether or not the
 87 *          matrix has unit diagonal:
 88 *          = 1:  matrix has non-unit diagonal (default)
 89 *          = 2:  matrix has unit diagonal
 90 *
 91 *  NRHS    (input) INTEGER
 92 *          The number of right hand side vectors in the system A*X = B.
 93 *
 94 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 95 *          The test matrix whose type is given by PATH.
 96 *
 97 *  LDA     (input) INTEGER
 98 *          The leading dimension of the array A.
 99 *          If PATH = xGB, LDA >= KL+KU+1.
100 *          If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1.
101 *          Otherwise, LDA >= max(1,M).
102 *
103 *  X       (input or output) DOUBLE PRECISION array, dimension(LDX,NRHS)
104 *          On entry, if XTYPE = 'C' (for 'Computed'), then X contains
105 *          the exact solution to the system of linear equations.
106 *          On exit, if XTYPE = 'N' (for 'New'), then X is initialized
107 *          with random values.
108 *
109 *  LDX     (input) INTEGER
110 *          The leading dimension of the array X.  If TRANS = 'N',
111 *          LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M).
112 *
113 *  B       (output) DOUBLE PRECISION array, dimension (LDB,NRHS)
114 *          The right hand side vector(s) for the system of equations,
115 *          computed from B = op(A) * X, where op(A) is determined by
116 *          TRANS.
117 *
118 *  LDB     (input) INTEGER
119 *          The leading dimension of the array B.  If TRANS = 'N',
120 *          LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N).
121 *
122 *  ISEED   (input/output) INTEGER array, dimension (4)
123 *          The seed vector for the random number generator (used in
124 *          DLATMS).  Modified on exit.
125 *
126 *  INFO    (output) INTEGER
127 *          = 0:  successful exit
128 *          < 0:  if INFO = -i, the i-th argument had an illegal value
129 *
130 *  =====================================================================
131 *
132 *     .. Parameters ..
133       DOUBLE PRECISION   ONE, ZERO
134       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
135 *     ..
136 *     .. Local Scalars ..
137       LOGICAL            BAND, GEN, NOTRAN, QRS, SYM, TRAN, TRI
138       CHARACTER          C1, DIAG
139       CHARACTER*2        C2
140       INTEGER            J, MB, NX
141 *     ..
142 *     .. External Functions ..
143       LOGICAL            LSAME, LSAMEN
144       EXTERNAL           LSAME, LSAMEN
145 *     ..
146 *     .. External Subroutines ..
147       EXTERNAL           DGBMV, DGEMM, DLACPY, DLARNV, DSBMV, DSPMV,
148      $                   DSYMM, DTBMV, DTPMV, DTRMM, XERBLA
149 *     ..
150 *     .. Intrinsic Functions ..
151       INTRINSIC          MAX
152 *     ..
153 *     .. Executable Statements ..
154 *
155 *     Test the input parameters.
156 *
157       INFO = 0
158       C1 = PATH( 11 )
159       C2 = PATH( 23 )
160       TRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
161       NOTRAN = .NOT.TRAN
162       GEN = LSAME( PATH( 22 ), 'G' )
163       QRS = LSAME( PATH( 22 ), 'Q' ) .OR. LSAME( PATH( 33 ), 'Q' )
164       SYM = LSAME( PATH( 22 ), 'P' ) .OR. LSAME( PATH( 22 ), 'S' )
165       TRI = LSAME( PATH( 22 ), 'T' )
166       BAND = LSAME( PATH( 33 ), 'B' )
167       IF.NOT.LSAME( C1, 'Double precision' ) ) THEN
168          INFO = -1
169       ELSE IF.NOT.( LSAME( XTYPE, 'N' ) .OR. LSAME( XTYPE, 'C' ) ) )
170      $          THEN
171          INFO = -2
172       ELSE IF( ( SYM .OR. TRI ) .AND. .NOT.
173      $         ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
174          INFO = -3
175       ELSE IF( ( GEN .OR. QRS ) .AND. .NOT.
176      $         ( TRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN
177          INFO = -4
178       ELSE IF( M.LT.0 ) THEN
179          INFO = -5
180       ELSE IF( N.LT.0 ) THEN
181          INFO = -6
182       ELSE IF( BAND .AND. KL.LT.0 ) THEN
183          INFO = -7
184       ELSE IF( BAND .AND. KU.LT.0 ) THEN
185          INFO = -8
186       ELSE IF( NRHS.LT.0 ) THEN
187          INFO = -9
188       ELSE IF( ( .NOT.BAND .AND. LDA.LT.MAX1, M ) ) .OR.
189      $         ( BAND .AND. ( SYM .OR. TRI ) .AND. LDA.LT.KL+1 ) .OR.
190      $         ( BAND .AND. GEN .AND. LDA.LT.KL+KU+1 ) ) THEN
191          INFO = -11
192       ELSE IF( ( NOTRAN .AND. LDX.LT.MAX1, N ) ) .OR.
193      $         ( TRAN .AND. LDX.LT.MAX1, M ) ) ) THEN
194          INFO = -13
195       ELSE IF( ( NOTRAN .AND. LDB.LT.MAX1, M ) ) .OR.
196      $         ( TRAN .AND. LDB.LT.MAX1, N ) ) ) THEN
197          INFO = -15
198       END IF
199       IF( INFO.NE.0 ) THEN
200          CALL XERBLA( 'DLARHS'-INFO )
201          RETURN
202       END IF
203 *
204 *     Initialize X to NRHS random vectors unless XTYPE = 'C'.
205 *
206       IF( TRAN ) THEN
207          NX = M
208          MB = N
209       ELSE
210          NX = N
211          MB = M
212       END IF
213       IF.NOT.LSAME( XTYPE, 'C' ) ) THEN
214          DO 10 J = 1, NRHS
215             CALL DLARNV( 2, ISEED, N, X( 1, J ) )
216    10    CONTINUE
217       END IF
218 *
219 *     Multiply X by op( A ) using an appropriate
220 *     matrix multiply routine.
221 *
222       IF( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'QR' ) .OR.
223      $    LSAMEN( 2, C2, 'LQ' ) .OR. LSAMEN( 2, C2, 'QL' ) .OR.
224      $    LSAMEN( 2, C2, 'RQ' ) ) THEN
225 *
226 *        General matrix
227 *
228          CALL DGEMM( TRANS, 'N', MB, NRHS, NX, ONE, A, LDA, X, LDX,
229      $               ZERO, B, LDB )
230 *
231       ELSE IF( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) ) THEN
232 *
233 *        Symmetric matrix, 2-D storage
234 *
235          CALL DSYMM( 'Left', UPLO, N, NRHS, ONE, A, LDA, X, LDX, ZERO,
236      $               B, LDB )
237 *
238       ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
239 *
240 *        General matrix, band storage
241 *
242          DO 20 J = 1, NRHS
243             CALL DGBMV( TRANS, MB, NX, KL, KU, ONE, A, LDA, X( 1, J ),
244      $                  1, ZERO, B( 1, J ), 1 )
245    20    CONTINUE
246 *
247       ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
248 *
249 *        Symmetric matrix, band storage
250 *
251          DO 30 J = 1, NRHS
252             CALL DSBMV( UPLO, N, KL, ONE, A, LDA, X( 1, J ), 1, ZERO,
253      $                  B( 1, J ), 1 )
254    30    CONTINUE
255 *
256       ELSE IF( LSAMEN( 2, C2, 'PP' ) .OR. LSAMEN( 2, C2, 'SP' ) ) THEN
257 *
258 *        Symmetric matrix, packed storage
259 *
260          DO 40 J = 1, NRHS
261             CALL DSPMV( UPLO, N, ONE, A, X( 1, J ), 1, ZERO, B( 1, J ),
262      $                  1 )
263    40    CONTINUE
264 *
265       ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN
266 *
267 *        Triangular matrix.  Note that for triangular matrices,
268 *           KU = 1 => non-unit triangular
269 *           KU = 2 => unit triangular
270 *
271          CALL DLACPY( 'Full', N, NRHS, X, LDX, B, LDB )
272          IF( KU.EQ.2 ) THEN
273             DIAG = 'U'
274          ELSE
275             DIAG = 'N'
276          END IF
277          CALL DTRMM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, LDA, B,
278      $               LDB )
279 *
280       ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN
281 *
282 *        Triangular matrix, packed storage
283 *
284          CALL DLACPY( 'Full', N, NRHS, X, LDX, B, LDB )
285          IF( KU.EQ.2 ) THEN
286             DIAG = 'U'
287          ELSE
288             DIAG = 'N'
289          END IF
290          DO 50 J = 1, NRHS
291             CALL DTPMV( UPLO, TRANS, DIAG, N, A, B( 1, J ), 1 )
292    50    CONTINUE
293 *
294       ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
295 *
296 *        Triangular matrix, banded storage
297 *
298          CALL DLACPY( 'Full', N, NRHS, X, LDX, B, LDB )
299          IF( KU.EQ.2 ) THEN
300             DIAG = 'U'
301          ELSE
302             DIAG = 'N'
303          END IF
304          DO 60 J = 1, NRHS
305             CALL DTBMV( UPLO, TRANS, DIAG, N, KL, A, LDA, B( 1, J ), 1 )
306    60    CONTINUE
307 *
308       ELSE
309 *
310 *        If PATH is none of the above, return with an error code.
311 *
312          INFO = -1
313          CALL XERBLA( 'DLARHS'-INFO )
314       END IF
315 *
316       RETURN
317 *
318 *     End of DLARHS
319 *
320       END