1       SUBROUTINE DSYT22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
  2      $                   V, LDV, TAU, WORK, RESULT )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT2 ),
 14      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *       DSYT22  generally checks a decomposition of the form
 21 *
 22 *               A U = U S
 23 *
 24 *       where A is symmetric, the columns of U are orthonormal, and S
 25 *       is diagonal (if KBAND=0) or symmetric tridiagonal (if
 26 *       KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
 27 *       otherwise the U is expressed as a product of Householder
 28 *       transformations, whose vectors are stored in the array "V" and
 29 *       whose scaling constants are in "TAU"; we shall use the letter
 30 *       "V" to refer to the product of Householder transformations
 31 *       (which should be equal to U).
 32 *
 33 *       Specifically, if ITYPE=1, then:
 34 *
 35 *               RESULT(1) = | U' A U - S | / ( |A| m ulp ) *and*
 36 *               RESULT(2) = | I - U'U | / ( m ulp )
 37 *
 38 *  Arguments
 39 *  =========
 40 *
 41 *  ITYPE   INTEGER
 42 *          Specifies the type of tests to be performed.
 43 *          1: U expressed as a dense orthogonal matrix:
 44 *             RESULT(1) = | A - U S U' | / ( |A| n ulp )   *and*
 45 *             RESULT(2) = | I - UU' | / ( n ulp )
 46 *
 47 *  UPLO    CHARACTER
 48 *          If UPLO='U', the upper triangle of A will be used and the
 49 *          (strictly) lower triangle will not be referenced.  If
 50 *          UPLO='L', the lower triangle of A will be used and the
 51 *          (strictly) upper triangle will not be referenced.
 52 *          Not modified.
 53 *
 54 *  N       INTEGER
 55 *          The size of the matrix.  If it is zero, DSYT22 does nothing.
 56 *          It must be at least zero.
 57 *          Not modified.
 58 *
 59 *  M       INTEGER
 60 *          The number of columns of U.  If it is zero, DSYT22 does
 61 *          nothing.  It must be at least zero.
 62 *          Not modified.
 63 *
 64 *  KBAND   INTEGER
 65 *          The bandwidth of the matrix.  It may only be zero or one.
 66 *          If zero, then S is diagonal, and E is not referenced.  If
 67 *          one, then S is symmetric tri-diagonal.
 68 *          Not modified.
 69 *
 70 *  A       DOUBLE PRECISION array, dimension (LDA , N)
 71 *          The original (unfactored) matrix.  It is assumed to be
 72 *          symmetric, and only the upper (UPLO='U') or only the lower
 73 *          (UPLO='L') will be referenced.
 74 *          Not modified.
 75 *
 76 *  LDA     INTEGER
 77 *          The leading dimension of A.  It must be at least 1
 78 *          and at least N.
 79 *          Not modified.
 80 *
 81 *  D       DOUBLE PRECISION array, dimension (N)
 82 *          The diagonal of the (symmetric tri-) diagonal matrix.
 83 *          Not modified.
 84 *
 85 *  E       DOUBLE PRECISION array, dimension (N)
 86 *          The off-diagonal of the (symmetric tri-) diagonal matrix.
 87 *          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
 88 *          Not referenced if KBAND=0.
 89 *          Not modified.
 90 *
 91 *  U       DOUBLE PRECISION array, dimension (LDU, N)
 92 *          If ITYPE=1 or 3, this contains the orthogonal matrix in
 93 *          the decomposition, expressed as a dense matrix.  If ITYPE=2,
 94 *          then it is not referenced.
 95 *          Not modified.
 96 *
 97 *  LDU     INTEGER
 98 *          The leading dimension of U.  LDU must be at least N and
 99 *          at least 1.
100 *          Not modified.
101 *
102 *  V       DOUBLE PRECISION array, dimension (LDV, N)
103 *          If ITYPE=2 or 3, the lower triangle of this array contains
104 *          the Householder vectors used to describe the orthogonal
105 *          matrix in the decomposition.  If ITYPE=1, then it is not
106 *          referenced.
107 *          Not modified.
108 *
109 *  LDV     INTEGER
110 *          The leading dimension of V.  LDV must be at least N and
111 *          at least 1.
112 *          Not modified.
113 *
114 *  TAU     DOUBLE PRECISION array, dimension (N)
115 *          If ITYPE >= 2, then TAU(j) is the scalar factor of
116 *          v(j) v(j)' in the Householder transformation H(j) of
117 *          the product  U = H(1)...H(n-2)
118 *          If ITYPE < 2, then TAU is not referenced.
119 *          Not modified.
120 *
121 *  WORK    DOUBLE PRECISION array, dimension (2*N**2)
122 *          Workspace.
123 *          Modified.
124 *
125 *  RESULT  DOUBLE PRECISION array, dimension (2)
126 *          The values computed by the two tests described above.  The
127 *          values are currently limited to 1/ulp, to avoid overflow.
128 *          RESULT(1) is always modified.  RESULT(2) is modified only
129 *          if LDU is at least N.
130 *          Modified.
131 *
132 *  =====================================================================
133 *
134 *     .. Parameters ..
135       DOUBLE PRECISION   ZERO, ONE
136       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
137 *     ..
138 *     .. Local Scalars ..
139       INTEGER            J, JJ, JJ1, JJ2, NN, NNP1
140       DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
141 *     ..
142 *     .. External Functions ..
143       DOUBLE PRECISION   DLAMCH, DLANSY
144       EXTERNAL           DLAMCH, DLANSY
145 *     ..
146 *     .. External Subroutines ..
147       EXTERNAL           DGEMM, DORT01, DSYMM
148 *     ..
149 *     .. Intrinsic Functions ..
150       INTRINSIC          DBLEMAXMIN
151 *     ..
152 *     .. Executable Statements ..
153 *
154       RESULT1 ) = ZERO
155       RESULT2 ) = ZERO
156       IF( N.LE.0 .OR. M.LE.0 )
157      $   RETURN
158 *
159       UNFL = DLAMCH( 'Safe minimum' )
160       ULP = DLAMCH( 'Precision' )
161 *
162 *     Do Test 1
163 *
164 *     Norm of A:
165 *
166       ANORM = MAX( DLANSY( '1', UPLO, N, A, LDA, WORK ), UNFL )
167 *
168 *     Compute error matrix:
169 *
170 *     ITYPE=1: error = U' A U - S
171 *
172       CALL DSYMM( 'L', UPLO, N, M, ONE, A, LDA, U, LDU, ZERO, WORK, N )
173       NN = N*N
174       NNP1 = NN + 1
175       CALL DGEMM( 'T''N', M, M, N, ONE, U, LDU, WORK, N, ZERO,
176      $            WORK( NNP1 ), N )
177       DO 10 J = 1, M
178          JJ = NN + ( J-1 )*+ J
179          WORK( JJ ) = WORK( JJ ) - D( J )
180    10 CONTINUE
181       IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
182          DO 20 J = 2, M
183             JJ1 = NN + ( J-1 )*+ J - 1
184             JJ2 = NN + ( J-2 )*+ J
185             WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
186             WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
187    20    CONTINUE
188       END IF
189       WNORM = DLANSY( '1', UPLO, M, WORK( NNP1 ), N, WORK( 1 ) )
190 *
191       IF( ANORM.GT.WNORM ) THEN
192          RESULT1 ) = ( WNORM / ANORM ) / ( M*ULP )
193       ELSE
194          IF( ANORM.LT.ONE ) THEN
195             RESULT1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
196          ELSE
197             RESULT1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
198          END IF
199       END IF
200 *
201 *     Do Test 2
202 *
203 *     Compute  U'U - I
204 *
205       IF( ITYPE.EQ.1 )
206      $   CALL DORT01( 'Columns', N, M, U, LDU, WORK, 2*N*N,
207      $                RESULT2 ) )
208 *
209       RETURN
210 *
211 *     End of DSYT22
212 *
213       END