1 PROGRAM SCHKEE
2 *
3 * -- LAPACK test routine (version 3.1.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * February 2007
6 *
7 * Purpose
8 * =======
9 *
10 * SCHKEE tests the REAL LAPACK subroutines for the matrix
11 * eigenvalue problem. The test paths in this version are
12 *
13 * NEP (Nonsymmetric Eigenvalue Problem):
14 * Test SGEHRD, SORGHR, SHSEQR, STREVC, SHSEIN, and SORMHR
15 *
16 * SEP (Symmetric Eigenvalue Problem):
17 * Test SSYTRD, SORGTR, SSTEQR, SSTERF, SSTEIN, SSTEDC,
18 * and drivers SSYEV(X), SSBEV(X), SSPEV(X), SSTEV(X),
19 * SSYEVD, SSBEVD, SSPEVD, SSTEVD
20 *
21 * SVD (Singular Value Decomposition):
22 * Test SGEBRD, SORGBR, SBDSQR, SBDSDC
23 * and the drivers SGESVD, SGESDD
24 *
25 * SEV (Nonsymmetric Eigenvalue/eigenvector Driver):
26 * Test SGEEV
27 *
28 * SES (Nonsymmetric Schur form Driver):
29 * Test SGEES
30 *
31 * SVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
32 * Test SGEEVX
33 *
34 * SSX (Nonsymmetric Schur form Expert Driver):
35 * Test SGEESX
36 *
37 * SGG (Generalized Nonsymmetric Eigenvalue Problem):
38 * Test SGGHRD, SGGBAL, SGGBAK, SHGEQZ, and STGEVC
39 * and the driver routines SGEGS and SGEGV
40 *
41 * SGS (Generalized Nonsymmetric Schur form Driver):
42 * Test SGGES
43 *
44 * SGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
45 * Test SGGEV
46 *
47 * SGX (Generalized Nonsymmetric Schur form Expert Driver):
48 * Test SGGESX
49 *
50 * SXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
51 * Test SGGEVX
52 *
53 * SSG (Symmetric Generalized Eigenvalue Problem):
54 * Test SSYGST, SSYGV, SSYGVD, SSYGVX, SSPGST, SSPGV, SSPGVD,
55 * SSPGVX, SSBGST, SSBGV, SSBGVD, and SSBGVX
56 *
57 * SSB (Symmetric Band Eigenvalue Problem):
58 * Test SSBTRD
59 *
60 * SBB (Band Singular Value Decomposition):
61 * Test SGBBRD
62 *
63 * SEC (Eigencondition estimation):
64 * Test SLALN2, SLASY2, SLAEQU, SLAEXC, STRSYL, STREXC, STRSNA,
65 * STRSEN, and SLAQTR
66 *
67 * SBL (Balancing a general matrix)
68 * Test SGEBAL
69 *
70 * SBK (Back transformation on a balanced matrix)
71 * Test SGEBAK
72 *
73 * SGL (Balancing a matrix pair)
74 * Test SGGBAL
75 *
76 * SGK (Back transformation on a matrix pair)
77 * Test SGGBAK
78 *
79 * GLM (Generalized Linear Regression Model):
80 * Tests SGGGLM
81 *
82 * GQR (Generalized QR and RQ factorizations):
83 * Tests SGGQRF and SGGRQF
84 *
85 * GSV (Generalized Singular Value Decomposition):
86 * Tests SGGSVD, SGGSVP, STGSJA, SLAGS2, SLAPLL, and SLAPMT
87 *
88 * CSD (CS decomposition):
89 * Tests SORCSD
90 *
91 * LSE (Constrained Linear Least Squares):
92 * Tests SGGLSE
93 *
94 * Each test path has a different set of inputs, but the data sets for
95 * the driver routines xEV, xES, xVX, and xSX can be concatenated in a
96 * single input file. The first line of input should contain one of the
97 * 3-character path names in columns 1-3. The number of remaining lines
98 * depends on what is found on the first line.
99 *
100 * The number of matrix types used in testing is often controllable from
101 * the input file. The number of matrix types for each path, and the
102 * test routine that describes them, is as follows:
103 *
104 * Path name(s) Types Test routine
105 *
106 * SHS or NEP 21 SCHKHS
107 * SST or SEP 21 SCHKST (routines)
108 * 18 SDRVST (drivers)
109 * SBD or SVD 16 SCHKBD (routines)
110 * 5 SDRVBD (drivers)
111 * SEV 21 SDRVEV
112 * SES 21 SDRVES
113 * SVX 21 SDRVVX
114 * SSX 21 SDRVSX
115 * SGG 26 SCHKGG (routines)
116 * 26 SDRVGG (drivers)
117 * SGS 26 SDRGES
118 * SGX 5 SDRGSX
119 * SGV 26 SDRGEV
120 * SXV 2 SDRGVX
121 * SSG 21 SDRVSG
122 * SSB 15 SCHKSB
123 * SBB 15 SCHKBB
124 * SEC - SCHKEC
125 * SBL - SCHKBL
126 * SBK - SCHKBK
127 * SGL - SCHKGL
128 * SGK - SCHKGK
129 * GLM 8 SCKGLM
130 * GQR 8 SCKGQR
131 * GSV 8 SCKGSV
132 * CSD 3 SCKCSD
133 * LSE 8 SCKLSE
134 *
135 *-----------------------------------------------------------------------
136 *
137 * NEP input file:
138 *
139 * line 2: NN, INTEGER
140 * Number of values of N.
141 *
142 * line 3: NVAL, INTEGER array, dimension (NN)
143 * The values for the matrix dimension N.
144 *
145 * line 4: NPARMS, INTEGER
146 * Number of values of the parameters NB, NBMIN, NX, NS, and
147 * MAXB.
148 *
149 * line 5: NBVAL, INTEGER array, dimension (NPARMS)
150 * The values for the blocksize NB.
151 *
152 * line 6: NBMIN, INTEGER array, dimension (NPARMS)
153 * The values for the minimum blocksize NBMIN.
154 *
155 * line 7: NXVAL, INTEGER array, dimension (NPARMS)
156 * The values for the crossover point NX.
157 *
158 * line 8: INMIN, INTEGER array, dimension (NPARMS)
159 * LAHQR vs TTQRE crossover point, >= 11
160 *
161 * line 9: INWIN, INTEGER array, dimension (NPARMS)
162 * recommended deflation window size
163 *
164 * line 10: INIBL, INTEGER array, dimension (NPARMS)
165 * nibble crossover point
166 *
167 * line 11: ISHFTS, INTEGER array, dimension (NPARMS)
168 * number of simultaneous shifts)
169 *
170 * line 12: IACC22, INTEGER array, dimension (NPARMS)
171 * select structured matrix multiply: 0, 1 or 2)
172 *
173 * line 13: THRESH
174 * Threshold value for the test ratios. Information will be
175 * printed about each test for which the test ratio is greater
176 * than or equal to the threshold. To have all of the test
177 * ratios printed, use THRESH = 0.0 .
178 *
179 * line 14: NEWSD, INTEGER
180 * A code indicating how to set the random number seed.
181 * = 0: Set the seed to a default value before each run
182 * = 1: Initialize the seed to a default value only before the
183 * first run
184 * = 2: Like 1, but use the seed values on the next line
185 *
186 * If line 14 was 2:
187 *
188 * line 15: INTEGER array, dimension (4)
189 * Four integer values for the random number seed.
190 *
191 * lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
192 * the user to specify the matrix types. Each line contains
193 * a 3-character path name in columns 1-3, and the number
194 * of matrix types must be the first nonblank item in columns
195 * 4-80. If the number of matrix types is at least 1 but is
196 * less than the maximum number of possible types, a second
197 * line will be read to get the numbers of the matrix types to
198 * be used. For example,
199 * NEP 21
200 * requests all of the matrix types for the nonsymmetric
201 * eigenvalue problem, while
202 * NEP 4
203 * 9 10 11 12
204 * requests only matrices of type 9, 10, 11, and 12.
205 *
206 * The valid 3-character path names are 'NEP' or 'SHS' for the
207 * nonsymmetric eigenvalue routines.
208 *
209 *-----------------------------------------------------------------------
210 *
211 * SEP or SSG input file:
212 *
213 * line 2: NN, INTEGER
214 * Number of values of N.
215 *
216 * line 3: NVAL, INTEGER array, dimension (NN)
217 * The values for the matrix dimension N.
218 *
219 * line 4: NPARMS, INTEGER
220 * Number of values of the parameters NB, NBMIN, and NX.
221 *
222 * line 5: NBVAL, INTEGER array, dimension (NPARMS)
223 * The values for the blocksize NB.
224 *
225 * line 6: NBMIN, INTEGER array, dimension (NPARMS)
226 * The values for the minimum blocksize NBMIN.
227 *
228 * line 7: NXVAL, INTEGER array, dimension (NPARMS)
229 * The values for the crossover point NX.
230 *
231 * line 8: THRESH
232 * Threshold value for the test ratios. Information will be
233 * printed about each test for which the test ratio is greater
234 * than or equal to the threshold.
235 *
236 * line 9: TSTCHK, LOGICAL
237 * Flag indicating whether or not to test the LAPACK routines.
238 *
239 * line 10: TSTDRV, LOGICAL
240 * Flag indicating whether or not to test the driver routines.
241 *
242 * line 11: TSTERR, LOGICAL
243 * Flag indicating whether or not to test the error exits for
244 * the LAPACK routines and driver routines.
245 *
246 * line 12: NEWSD, INTEGER
247 * A code indicating how to set the random number seed.
248 * = 0: Set the seed to a default value before each run
249 * = 1: Initialize the seed to a default value only before the
250 * first run
251 * = 2: Like 1, but use the seed values on the next line
252 *
253 * If line 12 was 2:
254 *
255 * line 13: INTEGER array, dimension (4)
256 * Four integer values for the random number seed.
257 *
258 * lines 13-EOF: Lines specifying matrix types, as for NEP.
259 * The 3-character path names are 'SEP' or 'SST' for the
260 * symmetric eigenvalue routines and driver routines, and
261 * 'SSG' for the routines for the symmetric generalized
262 * eigenvalue problem.
263 *
264 *-----------------------------------------------------------------------
265 *
266 * SVD input file:
267 *
268 * line 2: NN, INTEGER
269 * Number of values of M and N.
270 *
271 * line 3: MVAL, INTEGER array, dimension (NN)
272 * The values for the matrix row dimension M.
273 *
274 * line 4: NVAL, INTEGER array, dimension (NN)
275 * The values for the matrix column dimension N.
276 *
277 * line 5: NPARMS, INTEGER
278 * Number of values of the parameter NB, NBMIN, NX, and NRHS.
279 *
280 * line 6: NBVAL, INTEGER array, dimension (NPARMS)
281 * The values for the blocksize NB.
282 *
283 * line 7: NBMIN, INTEGER array, dimension (NPARMS)
284 * The values for the minimum blocksize NBMIN.
285 *
286 * line 8: NXVAL, INTEGER array, dimension (NPARMS)
287 * The values for the crossover point NX.
288 *
289 * line 9: NSVAL, INTEGER array, dimension (NPARMS)
290 * The values for the number of right hand sides NRHS.
291 *
292 * line 10: THRESH
293 * Threshold value for the test ratios. Information will be
294 * printed about each test for which the test ratio is greater
295 * than or equal to the threshold.
296 *
297 * line 11: TSTCHK, LOGICAL
298 * Flag indicating whether or not to test the LAPACK routines.
299 *
300 * line 12: TSTDRV, LOGICAL
301 * Flag indicating whether or not to test the driver routines.
302 *
303 * line 13: TSTERR, LOGICAL
304 * Flag indicating whether or not to test the error exits for
305 * the LAPACK routines and driver routines.
306 *
307 * line 14: NEWSD, INTEGER
308 * A code indicating how to set the random number seed.
309 * = 0: Set the seed to a default value before each run
310 * = 1: Initialize the seed to a default value only before the
311 * first run
312 * = 2: Like 1, but use the seed values on the next line
313 *
314 * If line 14 was 2:
315 *
316 * line 15: INTEGER array, dimension (4)
317 * Four integer values for the random number seed.
318 *
319 * lines 15-EOF: Lines specifying matrix types, as for NEP.
320 * The 3-character path names are 'SVD' or 'SBD' for both the
321 * SVD routines and the SVD driver routines.
322 *
323 *-----------------------------------------------------------------------
324 *
325 * SEV and SES data files:
326 *
327 * line 1: 'SEV' or 'SES' in columns 1 to 3.
328 *
329 * line 2: NSIZES, INTEGER
330 * Number of sizes of matrices to use. Should be at least 0
331 * and at most 20. If NSIZES = 0, no testing is done
332 * (although the remaining 3 lines are still read).
333 *
334 * line 3: NN, INTEGER array, dimension(NSIZES)
335 * Dimensions of matrices to be tested.
336 *
337 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
338 * These integer parameters determine how blocking is done
339 * (see ILAENV for details)
340 * NB : block size
341 * NBMIN : minimum block size
342 * NX : minimum dimension for blocking
343 * NS : number of shifts in xHSEQR
344 * NBCOL : minimum column dimension for blocking
345 *
346 * line 5: THRESH, REAL
347 * The test threshold against which computed residuals are
348 * compared. Should generally be in the range from 10. to 20.
349 * If it is 0., all test case data will be printed.
350 *
351 * line 6: TSTERR, LOGICAL
352 * Flag indicating whether or not to test the error exits.
353 *
354 * line 7: NEWSD, INTEGER
355 * A code indicating how to set the random number seed.
356 * = 0: Set the seed to a default value before each run
357 * = 1: Initialize the seed to a default value only before the
358 * first run
359 * = 2: Like 1, but use the seed values on the next line
360 *
361 * If line 7 was 2:
362 *
363 * line 8: INTEGER array, dimension (4)
364 * Four integer values for the random number seed.
365 *
366 * lines 9 and following: Lines specifying matrix types, as for NEP.
367 * The 3-character path name is 'SEV' to test SGEEV, or
368 * 'SES' to test SGEES.
369 *
370 *-----------------------------------------------------------------------
371 *
372 * The SVX data has two parts. The first part is identical to SEV,
373 * and the second part consists of test matrices with precomputed
374 * solutions.
375 *
376 * line 1: 'SVX' in columns 1-3.
377 *
378 * line 2: NSIZES, INTEGER
379 * If NSIZES = 0, no testing of randomly generated examples
380 * is done, but any precomputed examples are tested.
381 *
382 * line 3: NN, INTEGER array, dimension(NSIZES)
383 *
384 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
385 *
386 * line 5: THRESH, REAL
387 *
388 * line 6: TSTERR, LOGICAL
389 *
390 * line 7: NEWSD, INTEGER
391 *
392 * If line 7 was 2:
393 *
394 * line 8: INTEGER array, dimension (4)
395 *
396 * lines 9 and following: The first line contains 'SVX' in columns 1-3
397 * followed by the number of matrix types, possibly with
398 * a second line to specify certain matrix types.
399 * If the number of matrix types = 0, no testing of randomly
400 * generated examples is done, but any precomputed examples
401 * are tested.
402 *
403 * remaining lines : Each matrix is stored on 1+2*N lines, where N is
404 * its dimension. The first line contains the dimension (a
405 * single integer). The next N lines contain the matrix, one
406 * row per line. The last N lines correspond to each
407 * eigenvalue. Each of these last N lines contains 4 real
408 * values: the real part of the eigenvalue, the imaginary
409 * part of the eigenvalue, the reciprocal condition number of
410 * the eigenvalues, and the reciprocal condition number of the
411 * eigenvector. The end of data is indicated by dimension N=0.
412 * Even if no data is to be tested, there must be at least one
413 * line containing N=0.
414 *
415 *-----------------------------------------------------------------------
416 *
417 * The SSX data is like SVX. The first part is identical to SEV, and the
418 * second part consists of test matrices with precomputed solutions.
419 *
420 * line 1: 'SSX' in columns 1-3.
421 *
422 * line 2: NSIZES, INTEGER
423 * If NSIZES = 0, no testing of randomly generated examples
424 * is done, but any precomputed examples are tested.
425 *
426 * line 3: NN, INTEGER array, dimension(NSIZES)
427 *
428 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
429 *
430 * line 5: THRESH, REAL
431 *
432 * line 6: TSTERR, LOGICAL
433 *
434 * line 7: NEWSD, INTEGER
435 *
436 * If line 7 was 2:
437 *
438 * line 8: INTEGER array, dimension (4)
439 *
440 * lines 9 and following: The first line contains 'SSX' in columns 1-3
441 * followed by the number of matrix types, possibly with
442 * a second line to specify certain matrix types.
443 * If the number of matrix types = 0, no testing of randomly
444 * generated examples is done, but any precomputed examples
445 * are tested.
446 *
447 * remaining lines : Each matrix is stored on 3+N lines, where N is its
448 * dimension. The first line contains the dimension N and the
449 * dimension M of an invariant subspace. The second line
450 * contains M integers, identifying the eigenvalues in the
451 * invariant subspace (by their position in a list of
452 * eigenvalues ordered by increasing real part). The next N
453 * lines contain the matrix. The last line contains the
454 * reciprocal condition number for the average of the selected
455 * eigenvalues, and the reciprocal condition number for the
456 * corresponding right invariant subspace. The end of data is
457 * indicated by a line containing N=0 and M=0. Even if no data
458 * is to be tested, there must be at least one line containing
459 * N=0 and M=0.
460 *
461 *-----------------------------------------------------------------------
462 *
463 * SGG input file:
464 *
465 * line 2: NN, INTEGER
466 * Number of values of N.
467 *
468 * line 3: NVAL, INTEGER array, dimension (NN)
469 * The values for the matrix dimension N.
470 *
471 * line 4: NPARMS, INTEGER
472 * Number of values of the parameters NB, NBMIN, NS, MAXB, and
473 * NBCOL.
474 *
475 * line 5: NBVAL, INTEGER array, dimension (NPARMS)
476 * The values for the blocksize NB.
477 *
478 * line 6: NBMIN, INTEGER array, dimension (NPARMS)
479 * The values for NBMIN, the minimum row dimension for blocks.
480 *
481 * line 7: NSVAL, INTEGER array, dimension (NPARMS)
482 * The values for the number of shifts.
483 *
484 * line 8: MXBVAL, INTEGER array, dimension (NPARMS)
485 * The values for MAXB, used in determining minimum blocksize.
486 *
487 * line 9: NBCOL, INTEGER array, dimension (NPARMS)
488 * The values for NBCOL, the minimum column dimension for
489 * blocks.
490 *
491 * line 10: THRESH
492 * Threshold value for the test ratios. Information will be
493 * printed about each test for which the test ratio is greater
494 * than or equal to the threshold.
495 *
496 * line 11: TSTCHK, LOGICAL
497 * Flag indicating whether or not to test the LAPACK routines.
498 *
499 * line 12: TSTDRV, LOGICAL
500 * Flag indicating whether or not to test the driver routines.
501 *
502 * line 13: TSTERR, LOGICAL
503 * Flag indicating whether or not to test the error exits for
504 * the LAPACK routines and driver routines.
505 *
506 * line 14: NEWSD, INTEGER
507 * A code indicating how to set the random number seed.
508 * = 0: Set the seed to a default value before each run
509 * = 1: Initialize the seed to a default value only before the
510 * first run
511 * = 2: Like 1, but use the seed values on the next line
512 *
513 * If line 14 was 2:
514 *
515 * line 15: INTEGER array, dimension (4)
516 * Four integer values for the random number seed.
517 *
518 * lines 15-EOF: Lines specifying matrix types, as for NEP.
519 * The 3-character path name is 'SGG' for the generalized
520 * eigenvalue problem routines and driver routines.
521 *
522 *-----------------------------------------------------------------------
523 *
524 * SGS and SGV input files:
525 *
526 * line 1: 'SGS' or 'SGV' in columns 1 to 3.
527 *
528 * line 2: NN, INTEGER
529 * Number of values of N.
530 *
531 * line 3: NVAL, INTEGER array, dimension(NN)
532 * Dimensions of matrices to be tested.
533 *
534 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
535 * These integer parameters determine how blocking is done
536 * (see ILAENV for details)
537 * NB : block size
538 * NBMIN : minimum block size
539 * NX : minimum dimension for blocking
540 * NS : number of shifts in xHGEQR
541 * NBCOL : minimum column dimension for blocking
542 *
543 * line 5: THRESH, REAL
544 * The test threshold against which computed residuals are
545 * compared. Should generally be in the range from 10. to 20.
546 * If it is 0., all test case data will be printed.
547 *
548 * line 6: TSTERR, LOGICAL
549 * Flag indicating whether or not to test the error exits.
550 *
551 * line 7: NEWSD, INTEGER
552 * A code indicating how to set the random number seed.
553 * = 0: Set the seed to a default value before each run
554 * = 1: Initialize the seed to a default value only before the
555 * first run
556 * = 2: Like 1, but use the seed values on the next line
557 *
558 * If line 17 was 2:
559 *
560 * line 7: INTEGER array, dimension (4)
561 * Four integer values for the random number seed.
562 *
563 * lines 7-EOF: Lines specifying matrix types, as for NEP.
564 * The 3-character path name is 'SGS' for the generalized
565 * eigenvalue problem routines and driver routines.
566 *
567 *-----------------------------------------------------------------------
568 *
569 * SXV input files:
570 *
571 * line 1: 'SXV' in columns 1 to 3.
572 *
573 * line 2: N, INTEGER
574 * Value of N.
575 *
576 * line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
577 * These integer parameters determine how blocking is done
578 * (see ILAENV for details)
579 * NB : block size
580 * NBMIN : minimum block size
581 * NX : minimum dimension for blocking
582 * NS : number of shifts in xHGEQR
583 * NBCOL : minimum column dimension for blocking
584 *
585 * line 4: THRESH, REAL
586 * The test threshold against which computed residuals are
587 * compared. Should generally be in the range from 10. to 20.
588 * Information will be printed about each test for which the
589 * test ratio is greater than or equal to the threshold.
590 *
591 * line 5: TSTERR, LOGICAL
592 * Flag indicating whether or not to test the error exits for
593 * the LAPACK routines and driver routines.
594 *
595 * line 6: NEWSD, INTEGER
596 * A code indicating how to set the random number seed.
597 * = 0: Set the seed to a default value before each run
598 * = 1: Initialize the seed to a default value only before the
599 * first run
600 * = 2: Like 1, but use the seed values on the next line
601 *
602 * If line 6 was 2:
603 *
604 * line 7: INTEGER array, dimension (4)
605 * Four integer values for the random number seed.
606 *
607 * If line 2 was 0:
608 *
609 * line 7-EOF: Precomputed examples are tested.
610 *
611 * remaining lines : Each example is stored on 3+2*N lines, where N is
612 * its dimension. The first line contains the dimension (a
613 * single integer). The next N lines contain the matrix A, one
614 * row per line. The next N lines contain the matrix B. The
615 * next line contains the reciprocals of the eigenvalue
616 * condition numbers. The last line contains the reciprocals of
617 * the eigenvector condition numbers. The end of data is
618 * indicated by dimension N=0. Even if no data is to be tested,
619 * there must be at least one line containing N=0.
620 *
621 *-----------------------------------------------------------------------
622 *
623 * SGX input files:
624 *
625 * line 1: 'SGX' in columns 1 to 3.
626 *
627 * line 2: N, INTEGER
628 * Value of N.
629 *
630 * line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
631 * These integer parameters determine how blocking is done
632 * (see ILAENV for details)
633 * NB : block size
634 * NBMIN : minimum block size
635 * NX : minimum dimension for blocking
636 * NS : number of shifts in xHGEQR
637 * NBCOL : minimum column dimension for blocking
638 *
639 * line 4: THRESH, REAL
640 * The test threshold against which computed residuals are
641 * compared. Should generally be in the range from 10. to 20.
642 * Information will be printed about each test for which the
643 * test ratio is greater than or equal to the threshold.
644 *
645 * line 5: TSTERR, LOGICAL
646 * Flag indicating whether or not to test the error exits for
647 * the LAPACK routines and driver routines.
648 *
649 * line 6: NEWSD, INTEGER
650 * A code indicating how to set the random number seed.
651 * = 0: Set the seed to a default value before each run
652 * = 1: Initialize the seed to a default value only before the
653 * first run
654 * = 2: Like 1, but use the seed values on the next line
655 *
656 * If line 6 was 2:
657 *
658 * line 7: INTEGER array, dimension (4)
659 * Four integer values for the random number seed.
660 *
661 * If line 2 was 0:
662 *
663 * line 7-EOF: Precomputed examples are tested.
664 *
665 * remaining lines : Each example is stored on 3+2*N lines, where N is
666 * its dimension. The first line contains the dimension (a
667 * single integer). The next line contains an integer k such
668 * that only the last k eigenvalues will be selected and appear
669 * in the leading diagonal blocks of $A$ and $B$. The next N
670 * lines contain the matrix A, one row per line. The next N
671 * lines contain the matrix B. The last line contains the
672 * reciprocal of the eigenvalue cluster condition number and the
673 * reciprocal of the deflating subspace (associated with the
674 * selected eigencluster) condition number. The end of data is
675 * indicated by dimension N=0. Even if no data is to be tested,
676 * there must be at least one line containing N=0.
677 *
678 *-----------------------------------------------------------------------
679 *
680 * SSB input file:
681 *
682 * line 2: NN, INTEGER
683 * Number of values of N.
684 *
685 * line 3: NVAL, INTEGER array, dimension (NN)
686 * The values for the matrix dimension N.
687 *
688 * line 4: NK, INTEGER
689 * Number of values of K.
690 *
691 * line 5: KVAL, INTEGER array, dimension (NK)
692 * The values for the matrix dimension K.
693 *
694 * line 6: THRESH
695 * Threshold value for the test ratios. Information will be
696 * printed about each test for which the test ratio is greater
697 * than or equal to the threshold.
698 *
699 * line 7: NEWSD, INTEGER
700 * A code indicating how to set the random number seed.
701 * = 0: Set the seed to a default value before each run
702 * = 1: Initialize the seed to a default value only before the
703 * first run
704 * = 2: Like 1, but use the seed values on the next line
705 *
706 * If line 7 was 2:
707 *
708 * line 8: INTEGER array, dimension (4)
709 * Four integer values for the random number seed.
710 *
711 * lines 8-EOF: Lines specifying matrix types, as for NEP.
712 * The 3-character path name is 'SSB'.
713 *
714 *-----------------------------------------------------------------------
715 *
716 * SBB input file:
717 *
718 * line 2: NN, INTEGER
719 * Number of values of M and N.
720 *
721 * line 3: MVAL, INTEGER array, dimension (NN)
722 * The values for the matrix row dimension M.
723 *
724 * line 4: NVAL, INTEGER array, dimension (NN)
725 * The values for the matrix column dimension N.
726 *
727 * line 4: NK, INTEGER
728 * Number of values of K.
729 *
730 * line 5: KVAL, INTEGER array, dimension (NK)
731 * The values for the matrix bandwidth K.
732 *
733 * line 6: NPARMS, INTEGER
734 * Number of values of the parameter NRHS
735 *
736 * line 7: NSVAL, INTEGER array, dimension (NPARMS)
737 * The values for the number of right hand sides NRHS.
738 *
739 * line 8: THRESH
740 * Threshold value for the test ratios. Information will be
741 * printed about each test for which the test ratio is greater
742 * than or equal to the threshold.
743 *
744 * line 9: NEWSD, INTEGER
745 * A code indicating how to set the random number seed.
746 * = 0: Set the seed to a default value before each run
747 * = 1: Initialize the seed to a default value only before the
748 * first run
749 * = 2: Like 1, but use the seed values on the next line
750 *
751 * If line 9 was 2:
752 *
753 * line 10: INTEGER array, dimension (4)
754 * Four integer values for the random number seed.
755 *
756 * lines 10-EOF: Lines specifying matrix types, as for SVD.
757 * The 3-character path name is 'SBB'.
758 *
759 *-----------------------------------------------------------------------
760 *
761 * SEC input file:
762 *
763 * line 2: THRESH, REAL
764 * Threshold value for the test ratios. Information will be
765 * printed about each test for which the test ratio is greater
766 * than or equal to the threshold.
767 *
768 * lines 3-EOF:
769 *
770 * Input for testing the eigencondition routines consists of a set of
771 * specially constructed test cases and their solutions. The data
772 * format is not intended to be modified by the user.
773 *
774 *-----------------------------------------------------------------------
775 *
776 * SBL and SBK input files:
777 *
778 * line 1: 'SBL' in columns 1-3 to test SGEBAL, or 'SBK' in
779 * columns 1-3 to test SGEBAK.
780 *
781 * The remaining lines consist of specially constructed test cases.
782 *
783 *-----------------------------------------------------------------------
784 *
785 * SGL and SGK input files:
786 *
787 * line 1: 'SGL' in columns 1-3 to test SGGBAL, or 'SGK' in
788 * columns 1-3 to test SGGBAK.
789 *
790 * The remaining lines consist of specially constructed test cases.
791 *
792 *-----------------------------------------------------------------------
793 *
794 * GLM data file:
795 *
796 * line 1: 'GLM' in columns 1 to 3.
797 *
798 * line 2: NN, INTEGER
799 * Number of values of M, P, and N.
800 *
801 * line 3: MVAL, INTEGER array, dimension(NN)
802 * Values of M (row dimension).
803 *
804 * line 4: PVAL, INTEGER array, dimension(NN)
805 * Values of P (row dimension).
806 *
807 * line 5: NVAL, INTEGER array, dimension(NN)
808 * Values of N (column dimension), note M <= N <= M+P.
809 *
810 * line 6: THRESH, REAL
811 * Threshold value for the test ratios. Information will be
812 * printed about each test for which the test ratio is greater
813 * than or equal to the threshold.
814 *
815 * line 7: TSTERR, LOGICAL
816 * Flag indicating whether or not to test the error exits for
817 * the LAPACK routines and driver routines.
818 *
819 * line 8: NEWSD, INTEGER
820 * A code indicating how to set the random number seed.
821 * = 0: Set the seed to a default value before each run
822 * = 1: Initialize the seed to a default value only before the
823 * first run
824 * = 2: Like 1, but use the seed values on the next line
825 *
826 * If line 8 was 2:
827 *
828 * line 9: INTEGER array, dimension (4)
829 * Four integer values for the random number seed.
830 *
831 * lines 9-EOF: Lines specifying matrix types, as for NEP.
832 * The 3-character path name is 'GLM' for the generalized
833 * linear regression model routines.
834 *
835 *-----------------------------------------------------------------------
836 *
837 * GQR data file:
838 *
839 * line 1: 'GQR' in columns 1 to 3.
840 *
841 * line 2: NN, INTEGER
842 * Number of values of M, P, and N.
843 *
844 * line 3: MVAL, INTEGER array, dimension(NN)
845 * Values of M.
846 *
847 * line 4: PVAL, INTEGER array, dimension(NN)
848 * Values of P.
849 *
850 * line 5: NVAL, INTEGER array, dimension(NN)
851 * Values of N.
852 *
853 * line 6: THRESH, REAL
854 * Threshold value for the test ratios. Information will be
855 * printed about each test for which the test ratio is greater
856 * than or equal to the threshold.
857 *
858 * line 7: TSTERR, LOGICAL
859 * Flag indicating whether or not to test the error exits for
860 * the LAPACK routines and driver routines.
861 *
862 * line 8: NEWSD, INTEGER
863 * A code indicating how to set the random number seed.
864 * = 0: Set the seed to a default value before each run
865 * = 1: Initialize the seed to a default value only before the
866 * first run
867 * = 2: Like 1, but use the seed values on the next line
868 *
869 * If line 8 was 2:
870 *
871 * line 9: INTEGER array, dimension (4)
872 * Four integer values for the random number seed.
873 *
874 * lines 9-EOF: Lines specifying matrix types, as for NEP.
875 * The 3-character path name is 'GQR' for the generalized
876 * QR and RQ routines.
877 *
878 *-----------------------------------------------------------------------
879 *
880 * GSV data file:
881 *
882 * line 1: 'GSV' in columns 1 to 3.
883 *
884 * line 2: NN, INTEGER
885 * Number of values of M, P, and N.
886 *
887 * line 3: MVAL, INTEGER array, dimension(NN)
888 * Values of M (row dimension).
889 *
890 * line 4: PVAL, INTEGER array, dimension(NN)
891 * Values of P (row dimension).
892 *
893 * line 5: NVAL, INTEGER array, dimension(NN)
894 * Values of N (column dimension).
895 *
896 * line 6: THRESH, REAL
897 * Threshold value for the test ratios. Information will be
898 * printed about each test for which the test ratio is greater
899 * than or equal to the threshold.
900 *
901 * line 7: TSTERR, LOGICAL
902 * Flag indicating whether or not to test the error exits for
903 * the LAPACK routines and driver routines.
904 *
905 * line 8: NEWSD, INTEGER
906 * A code indicating how to set the random number seed.
907 * = 0: Set the seed to a default value before each run
908 * = 1: Initialize the seed to a default value only before the
909 * first run
910 * = 2: Like 1, but use the seed values on the next line
911 *
912 * If line 8 was 2:
913 *
914 * line 9: INTEGER array, dimension (4)
915 * Four integer values for the random number seed.
916 *
917 * lines 9-EOF: Lines specifying matrix types, as for NEP.
918 * The 3-character path name is 'GSV' for the generalized
919 * SVD routines.
920 *
921 *-----------------------------------------------------------------------
922 *
923 * CSD data file:
924 *
925 * line 1: 'CSD' in columns 1 to 3.
926 *
927 * line 2: NM, INTEGER
928 * Number of values of M, P, and N.
929 *
930 * line 3: MVAL, INTEGER array, dimension(NM)
931 * Values of M (row and column dimension of orthogonal matrix).
932 *
933 * line 4: PVAL, INTEGER array, dimension(NM)
934 * Values of P (row dimension of top-left block).
935 *
936 * line 5: NVAL, INTEGER array, dimension(NM)
937 * Values of N (column dimension of top-left block).
938 *
939 * line 6: THRESH, REAL
940 * Threshold value for the test ratios. Information will be
941 * printed about each test for which the test ratio is greater
942 * than or equal to the threshold.
943 *
944 * line 7: TSTERR, LOGICAL
945 * Flag indicating whether or not to test the error exits for
946 * the LAPACK routines and driver routines.
947 *
948 * line 8: NEWSD, INTEGER
949 * A code indicating how to set the random number seed.
950 * = 0: Set the seed to a default value before each run
951 * = 1: Initialize the seed to a default value only before the
952 * first run
953 * = 2: Like 1, but use the seed values on the next line
954 *
955 * If line 8 was 2:
956 *
957 * line 9: INTEGER array, dimension (4)
958 * Four integer values for the random number seed.
959 *
960 * lines 9-EOF: Lines specifying matrix types, as for NEP.
961 * The 3-character path name is 'CSD' for the CSD routine.
962 *
963 *-----------------------------------------------------------------------
964 *
965 * LSE data file:
966 *
967 * line 1: 'LSE' in columns 1 to 3.
968 *
969 * line 2: NN, INTEGER
970 * Number of values of M, P, and N.
971 *
972 * line 3: MVAL, INTEGER array, dimension(NN)
973 * Values of M.
974 *
975 * line 4: PVAL, INTEGER array, dimension(NN)
976 * Values of P.
977 *
978 * line 5: NVAL, INTEGER array, dimension(NN)
979 * Values of N, note P <= N <= P+M.
980 *
981 * line 6: THRESH, REAL
982 * Threshold value for the test ratios. Information will be
983 * printed about each test for which the test ratio is greater
984 * than or equal to the threshold.
985 *
986 * line 7: TSTERR, LOGICAL
987 * Flag indicating whether or not to test the error exits for
988 * the LAPACK routines and driver routines.
989 *
990 * line 8: NEWSD, INTEGER
991 * A code indicating how to set the random number seed.
992 * = 0: Set the seed to a default value before each run
993 * = 1: Initialize the seed to a default value only before the
994 * first run
995 * = 2: Like 1, but use the seed values on the next line
996 *
997 * If line 8 was 2:
998 *
999 * line 9: INTEGER array, dimension (4)
1000 * Four integer values for the random number seed.
1001 *
1002 * lines 9-EOF: Lines specifying matrix types, as for NEP.
1003 * The 3-character path name is 'GSV' for the generalized
1004 * SVD routines.
1005 *
1006 *-----------------------------------------------------------------------
1007 *
1008 * NMAX is currently set to 132 and must be at least 12 for some of the
1009 * precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter
1010 * statements below. For SVD, we assume NRHS may be as big as N. The
1011 * parameter NEED is set to 14 to allow for 14 N-by-N matrices for SGG.
1012 *
1013 * =====================================================================
1014 *
1015 * .. Parameters ..
1016 INTEGER NMAX
1017 PARAMETER ( NMAX = 132 )
1018 INTEGER NCMAX
1019 PARAMETER ( NCMAX = 20 )
1020 INTEGER NEED
1021 PARAMETER ( NEED = 14 )
1022 INTEGER LWORK
1023 PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 )
1024 INTEGER LIWORK
1025 PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) )
1026 INTEGER MAXIN
1027 PARAMETER ( MAXIN = 20 )
1028 INTEGER MAXT
1029 PARAMETER ( MAXT = 30 )
1030 INTEGER NIN, NOUT
1031 PARAMETER ( NIN = 5, NOUT = 6 )
1032 * ..
1033 * .. Local Scalars ..
1034 LOGICAL CSD, FATAL, GLM, GQR, GSV, LSE, NEP, SBB, SBK,
1035 $ SBL, SEP, SES, SEV, SGG, SGK, SGL, SGS, SGV,
1036 $ SGX, SSB, SSX, SVD, SVX, SXV, TSTCHK, TSTDIF,
1037 $ TSTDRV, TSTERR
1038 CHARACTER C1
1039 CHARACTER*3 C3, PATH
1040 CHARACTER*32 VNAME
1041 CHARACTER*10 INTSTR
1042 CHARACTER*80 LINE
1043 INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
1044 $ NK, NN, NPARMS, NRHS, NTYPES,
1045 $ VERS_MAJOR, VERS_MINOR, VERS_PATCH
1046 REAL EPS, S1, S2, THRESH, THRSHN
1047 * ..
1048 * .. Local Arrays ..
1049 LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
1050 INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
1051 $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
1052 $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
1053 $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
1054 $ PVAL( MAXIN )
1055 INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
1056 $ ISHFTS( MAXIN ), IACC22( MAXIN )
1057 REAL A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ),
1058 $ C( NCMAX*NCMAX, NCMAX*NCMAX ), D( NMAX, 12 ),
1059 $ RESULT( 500 ), TAUA( NMAX ), TAUB( NMAX ),
1060 $ WORK( LWORK ), X( 5*NMAX )
1061 * ..
1062 * .. External Functions ..
1063 LOGICAL LSAMEN
1064 REAL SECOND, SLAMCH
1065 EXTERNAL LSAMEN, SECOND, SLAMCH
1066 * ..
1067 * .. External Subroutines ..
1068 EXTERNAL ALAREQ, SCHKBB, SCHKBD, SCHKBK, SCHKBL, SCHKEC,
1069 $ SCHKGG, SCHKGK, SCHKGL, SCHKHS, SCHKSB, SCHKST,
1070 $ SCKCSD, SCKGLM, SCKGQR, SCKGSV, SCKLSE, SDRGES,
1071 $ SDRGEV, SDRGSX, SDRGVX, SDRVBD, SDRVES, SDRVEV,
1072 $ SDRVGG, SDRVSG, SDRVST, SDRVSX, SDRVVX, SERRBD,
1073 $ SERRED, SERRGG, SERRHS, SERRST, ILAVER, XLAENV
1074 * ..
1075 * .. Intrinsic Functions ..
1076 INTRINSIC LEN, MIN
1077 * ..
1078 * .. Scalars in Common ..
1079 LOGICAL LERR, OK
1080 CHARACTER*32 SRNAMT
1081 INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
1082 $ SELOPT
1083 * ..
1084 * .. Arrays in Common ..
1085 LOGICAL SELVAL( 20 )
1086 INTEGER IPARMS( 100 )
1087 REAL SELWI( 20 ), SELWR( 20 )
1088 * ..
1089 * .. Common blocks ..
1090 COMMON / CENVIR / NPROC, NSHIFT, MAXB
1091 COMMON / CLAENV / IPARMS
1092 COMMON / INFOC / INFOT, NUNIT, OK, LERR
1093 COMMON / SRNAMC / SRNAMT
1094 COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
1095 * ..
1096 * .. Data statements ..
1097 DATA INTSTR / '0123456789' /
1098 DATA IOLDSD / 0, 0, 0, 1 /
1099 * ..
1100 * .. Executable Statements ..
1101 *
1102 S1 = SECOND( )
1103 FATAL = .FALSE.
1104 NUNIT = NOUT
1105 *
1106 * Return to here to read multiple sets of data
1107 *
1108 10 CONTINUE
1109 *
1110 * Read the first line and set the 3-character test path
1111 *
1112 READ( NIN, FMT = '(A80)', END = 380 )LINE
1113 PATH = LINE( 1: 3 )
1114 NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'SHS' )
1115 SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'SST' ) .OR.
1116 $ LSAMEN( 3, PATH, 'SSG' )
1117 SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'SBD' )
1118 SEV = LSAMEN( 3, PATH, 'SEV' )
1119 SES = LSAMEN( 3, PATH, 'SES' )
1120 SVX = LSAMEN( 3, PATH, 'SVX' )
1121 SSX = LSAMEN( 3, PATH, 'SSX' )
1122 SGG = LSAMEN( 3, PATH, 'SGG' )
1123 SGS = LSAMEN( 3, PATH, 'SGS' )
1124 SGX = LSAMEN( 3, PATH, 'SGX' )
1125 SGV = LSAMEN( 3, PATH, 'SGV' )
1126 SXV = LSAMEN( 3, PATH, 'SXV' )
1127 SSB = LSAMEN( 3, PATH, 'SSB' )
1128 SBB = LSAMEN( 3, PATH, 'SBB' )
1129 GLM = LSAMEN( 3, PATH, 'GLM' )
1130 GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
1131 GSV = LSAMEN( 3, PATH, 'GSV' )
1132 CSD = LSAMEN( 3, PATH, 'CSD' )
1133 LSE = LSAMEN( 3, PATH, 'LSE' )
1134 SBL = LSAMEN( 3, PATH, 'SBL' )
1135 SBK = LSAMEN( 3, PATH, 'SBK' )
1136 SGL = LSAMEN( 3, PATH, 'SGL' )
1137 SGK = LSAMEN( 3, PATH, 'SGK' )
1138 *
1139 * Report values of parameters.
1140 *
1141 IF( PATH.EQ.' ' ) THEN
1142 GO TO 10
1143 ELSE IF( NEP ) THEN
1144 WRITE( NOUT, FMT = 9987 )
1145 ELSE IF( SEP ) THEN
1146 WRITE( NOUT, FMT = 9986 )
1147 ELSE IF( SVD ) THEN
1148 WRITE( NOUT, FMT = 9985 )
1149 ELSE IF( SEV ) THEN
1150 WRITE( NOUT, FMT = 9979 )
1151 ELSE IF( SES ) THEN
1152 WRITE( NOUT, FMT = 9978 )
1153 ELSE IF( SVX ) THEN
1154 WRITE( NOUT, FMT = 9977 )
1155 ELSE IF( SSX ) THEN
1156 WRITE( NOUT, FMT = 9976 )
1157 ELSE IF( SGG ) THEN
1158 WRITE( NOUT, FMT = 9975 )
1159 ELSE IF( SGS ) THEN
1160 WRITE( NOUT, FMT = 9964 )
1161 ELSE IF( SGX ) THEN
1162 WRITE( NOUT, FMT = 9965 )
1163 ELSE IF( SGV ) THEN
1164 WRITE( NOUT, FMT = 9963 )
1165 ELSE IF( SXV ) THEN
1166 WRITE( NOUT, FMT = 9962 )
1167 ELSE IF( SSB ) THEN
1168 WRITE( NOUT, FMT = 9974 )
1169 ELSE IF( SBB ) THEN
1170 WRITE( NOUT, FMT = 9967 )
1171 ELSE IF( GLM ) THEN
1172 WRITE( NOUT, FMT = 9971 )
1173 ELSE IF( GQR ) THEN
1174 WRITE( NOUT, FMT = 9970 )
1175 ELSE IF( GSV ) THEN
1176 WRITE( NOUT, FMT = 9969 )
1177 ELSE IF( CSD ) THEN
1178 WRITE( NOUT, FMT = 9960 )
1179 ELSE IF( LSE ) THEN
1180 WRITE( NOUT, FMT = 9968 )
1181 ELSE IF( SBL ) THEN
1182 *
1183 * SGEBAL: Balancing
1184 *
1185 CALL SCHKBL( NIN, NOUT )
1186 GO TO 10
1187 ELSE IF( SBK ) THEN
1188 *
1189 * SGEBAK: Back transformation
1190 *
1191 CALL SCHKBK( NIN, NOUT )
1192 GO TO 10
1193 ELSE IF( SGL ) THEN
1194 *
1195 * SGGBAL: Balancing
1196 *
1197 CALL SCHKGL( NIN, NOUT )
1198 GO TO 10
1199 ELSE IF( SGK ) THEN
1200 *
1201 * SGGBAK: Back transformation
1202 *
1203 CALL SCHKGK( NIN, NOUT )
1204 GO TO 10
1205 ELSE IF( LSAMEN( 3, PATH, 'SEC' ) ) THEN
1206 *
1207 * SEC: Eigencondition estimation
1208 *
1209 READ( NIN, FMT = * )THRESH
1210 CALL XLAENV( 1, 1 )
1211 CALL XLAENV( 12, 11 )
1212 CALL XLAENV( 13, 2 )
1213 CALL XLAENV( 14, 0 )
1214 CALL XLAENV( 15, 2 )
1215 CALL XLAENV( 16, 2 )
1216 TSTERR = .TRUE.
1217 CALL SCHKEC( THRESH, TSTERR, NIN, NOUT )
1218 GO TO 10
1219 ELSE
1220 WRITE( NOUT, FMT = 9992 )PATH
1221 GO TO 10
1222 END IF
1223 CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
1224 WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
1225 WRITE( NOUT, FMT = 9984 )
1226 *
1227 * Read the number of values of M, P, and N.
1228 *
1229 READ( NIN, FMT = * )NN
1230 IF( NN.LT.0 ) THEN
1231 WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
1232 NN = 0
1233 FATAL = .TRUE.
1234 ELSE IF( NN.GT.MAXIN ) THEN
1235 WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
1236 NN = 0
1237 FATAL = .TRUE.
1238 END IF
1239 *
1240 * Read the values of M
1241 *
1242 IF( .NOT.( SGX .OR. SXV ) ) THEN
1243 READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
1244 IF( SVD ) THEN
1245 VNAME = ' M '
1246 ELSE
1247 VNAME = ' N '
1248 END IF
1249 DO 20 I = 1, NN
1250 IF( MVAL( I ).LT.0 ) THEN
1251 WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
1252 FATAL = .TRUE.
1253 ELSE IF( MVAL( I ).GT.NMAX ) THEN
1254 WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
1255 FATAL = .TRUE.
1256 END IF
1257 20 CONTINUE
1258 WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
1259 END IF
1260 *
1261 * Read the values of P
1262 *
1263 IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
1264 READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
1265 DO 30 I = 1, NN
1266 IF( PVAL( I ).LT.0 ) THEN
1267 WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
1268 FATAL = .TRUE.
1269 ELSE IF( PVAL( I ).GT.NMAX ) THEN
1270 WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
1271 FATAL = .TRUE.
1272 END IF
1273 30 CONTINUE
1274 WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
1275 END IF
1276 *
1277 * Read the values of N
1278 *
1279 IF( SVD .OR. SBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
1280 $ LSE ) THEN
1281 READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
1282 DO 40 I = 1, NN
1283 IF( NVAL( I ).LT.0 ) THEN
1284 WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
1285 FATAL = .TRUE.
1286 ELSE IF( NVAL( I ).GT.NMAX ) THEN
1287 WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
1288 FATAL = .TRUE.
1289 END IF
1290 40 CONTINUE
1291 ELSE
1292 DO 50 I = 1, NN
1293 NVAL( I ) = MVAL( I )
1294 50 CONTINUE
1295 END IF
1296 IF( .NOT.( SGX .OR. SXV ) ) THEN
1297 WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
1298 ELSE
1299 WRITE( NOUT, FMT = 9983 )'N: ', NN
1300 END IF
1301 *
1302 * Read the number of values of K, followed by the values of K
1303 *
1304 IF( SSB .OR. SBB ) THEN
1305 READ( NIN, FMT = * )NK
1306 READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
1307 DO 60 I = 1, NK
1308 IF( KVAL( I ).LT.0 ) THEN
1309 WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
1310 FATAL = .TRUE.
1311 ELSE IF( KVAL( I ).GT.NMAX ) THEN
1312 WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
1313 FATAL = .TRUE.
1314 END IF
1315 60 CONTINUE
1316 WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
1317 END IF
1318 *
1319 IF( SEV .OR. SES .OR. SVX .OR. SSX ) THEN
1320 *
1321 * For the nonsymmetric QR driver routines, only one set of
1322 * parameters is allowed.
1323 *
1324 READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
1325 $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
1326 IF( NBVAL( 1 ).LT.1 ) THEN
1327 WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
1328 FATAL = .TRUE.
1329 ELSE IF( NBMIN( 1 ).LT.1 ) THEN
1330 WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
1331 FATAL = .TRUE.
1332 ELSE IF( NXVAL( 1 ).LT.1 ) THEN
1333 WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
1334 FATAL = .TRUE.
1335 ELSE IF( INMIN( 1 ).LT.1 ) THEN
1336 WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
1337 FATAL = .TRUE.
1338 ELSE IF( INWIN( 1 ).LT.1 ) THEN
1339 WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
1340 FATAL = .TRUE.
1341 ELSE IF( INIBL( 1 ).LT.1 ) THEN
1342 WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
1343 FATAL = .TRUE.
1344 ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
1345 WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
1346 FATAL = .TRUE.
1347 ELSE IF( IACC22( 1 ).LT.0 ) THEN
1348 WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
1349 FATAL = .TRUE.
1350 END IF
1351 CALL XLAENV( 1, NBVAL( 1 ) )
1352 CALL XLAENV( 2, NBMIN( 1 ) )
1353 CALL XLAENV( 3, NXVAL( 1 ) )
1354 CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
1355 CALL XLAENV(13, INWIN( 1 ) )
1356 CALL XLAENV(14, INIBL( 1 ) )
1357 CALL XLAENV(15, ISHFTS( 1 ) )
1358 CALL XLAENV(16, IACC22( 1 ) )
1359 WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
1360 WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
1361 WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
1362 WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
1363 WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
1364 WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
1365 WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
1366 WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
1367 *
1368 ELSE IF( SGS .OR. SGX .OR. SGV .OR. SXV ) THEN
1369 *
1370 * For the nonsymmetric generalized driver routines, only one set
1371 * of parameters is allowed.
1372 *
1373 READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
1374 $ NSVAL( 1 ), MXBVAL( 1 )
1375 IF( NBVAL( 1 ).LT.1 ) THEN
1376 WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
1377 FATAL = .TRUE.
1378 ELSE IF( NBMIN( 1 ).LT.1 ) THEN
1379 WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
1380 FATAL = .TRUE.
1381 ELSE IF( NXVAL( 1 ).LT.1 ) THEN
1382 WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
1383 FATAL = .TRUE.
1384 ELSE IF( NSVAL( 1 ).LT.2 ) THEN
1385 WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
1386 FATAL = .TRUE.
1387 ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
1388 WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
1389 FATAL = .TRUE.
1390 END IF
1391 CALL XLAENV( 1, NBVAL( 1 ) )
1392 CALL XLAENV( 2, NBMIN( 1 ) )
1393 CALL XLAENV( 3, NXVAL( 1 ) )
1394 CALL XLAENV( 4, NSVAL( 1 ) )
1395 CALL XLAENV( 8, MXBVAL( 1 ) )
1396 WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
1397 WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
1398 WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
1399 WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
1400 WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
1401 *
1402 ELSE IF( .NOT.SSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
1403 $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
1404 *
1405 * For the other paths, the number of parameters can be varied
1406 * from the input file. Read the number of parameter values.
1407 *
1408 READ( NIN, FMT = * )NPARMS
1409 IF( NPARMS.LT.1 ) THEN
1410 WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
1411 NPARMS = 0
1412 FATAL = .TRUE.
1413 ELSE IF( NPARMS.GT.MAXIN ) THEN
1414 WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
1415 NPARMS = 0
1416 FATAL = .TRUE.
1417 END IF
1418 *
1419 * Read the values of NB
1420 *
1421 IF( .NOT.SBB ) THEN
1422 READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
1423 DO 70 I = 1, NPARMS
1424 IF( NBVAL( I ).LT.0 ) THEN
1425 WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
1426 FATAL = .TRUE.
1427 ELSE IF( NBVAL( I ).GT.NMAX ) THEN
1428 WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
1429 FATAL = .TRUE.
1430 END IF
1431 70 CONTINUE
1432 WRITE( NOUT, FMT = 9983 )'NB: ',
1433 $ ( NBVAL( I ), I = 1, NPARMS )
1434 END IF
1435 *
1436 * Read the values of NBMIN
1437 *
1438 IF( NEP .OR. SEP .OR. SVD .OR. SGG ) THEN
1439 READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
1440 DO 80 I = 1, NPARMS
1441 IF( NBMIN( I ).LT.0 ) THEN
1442 WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
1443 FATAL = .TRUE.
1444 ELSE IF( NBMIN( I ).GT.NMAX ) THEN
1445 WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
1446 FATAL = .TRUE.
1447 END IF
1448 80 CONTINUE
1449 WRITE( NOUT, FMT = 9983 )'NBMIN:',
1450 $ ( NBMIN( I ), I = 1, NPARMS )
1451 ELSE
1452 DO 90 I = 1, NPARMS
1453 NBMIN( I ) = 1
1454 90 CONTINUE
1455 END IF
1456 *
1457 * Read the values of NX
1458 *
1459 IF( NEP .OR. SEP .OR. SVD ) THEN
1460 READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
1461 DO 100 I = 1, NPARMS
1462 IF( NXVAL( I ).LT.0 ) THEN
1463 WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
1464 FATAL = .TRUE.
1465 ELSE IF( NXVAL( I ).GT.NMAX ) THEN
1466 WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
1467 FATAL = .TRUE.
1468 END IF
1469 100 CONTINUE
1470 WRITE( NOUT, FMT = 9983 )'NX: ',
1471 $ ( NXVAL( I ), I = 1, NPARMS )
1472 ELSE
1473 DO 110 I = 1, NPARMS
1474 NXVAL( I ) = 1
1475 110 CONTINUE
1476 END IF
1477 *
1478 * Read the values of NSHIFT (if SGG) or NRHS (if SVD
1479 * or SBB).
1480 *
1481 IF( SVD .OR. SBB .OR. SGG ) THEN
1482 READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
1483 DO 120 I = 1, NPARMS
1484 IF( NSVAL( I ).LT.0 ) THEN
1485 WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
1486 FATAL = .TRUE.
1487 ELSE IF( NSVAL( I ).GT.NMAX ) THEN
1488 WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
1489 FATAL = .TRUE.
1490 END IF
1491 120 CONTINUE
1492 WRITE( NOUT, FMT = 9983 )'NS: ',
1493 $ ( NSVAL( I ), I = 1, NPARMS )
1494 ELSE
1495 DO 130 I = 1, NPARMS
1496 NSVAL( I ) = 1
1497 130 CONTINUE
1498 END IF
1499 *
1500 * Read the values for MAXB.
1501 *
1502 IF( SGG ) THEN
1503 READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
1504 DO 140 I = 1, NPARMS
1505 IF( MXBVAL( I ).LT.0 ) THEN
1506 WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
1507 FATAL = .TRUE.
1508 ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
1509 WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
1510 FATAL = .TRUE.
1511 END IF
1512 140 CONTINUE
1513 WRITE( NOUT, FMT = 9983 )'MAXB: ',
1514 $ ( MXBVAL( I ), I = 1, NPARMS )
1515 ELSE
1516 DO 150 I = 1, NPARMS
1517 MXBVAL( I ) = 1
1518 150 CONTINUE
1519 END IF
1520 *
1521 * Read the values for INMIN.
1522 *
1523 IF( NEP ) THEN
1524 READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
1525 DO 540 I = 1, NPARMS
1526 IF( INMIN( I ).LT.0 ) THEN
1527 WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
1528 FATAL = .TRUE.
1529 END IF
1530 540 CONTINUE
1531 WRITE( NOUT, FMT = 9983 )'INMIN: ',
1532 $ ( INMIN( I ), I = 1, NPARMS )
1533 ELSE
1534 DO 550 I = 1, NPARMS
1535 INMIN( I ) = 1
1536 550 CONTINUE
1537 END IF
1538 *
1539 * Read the values for INWIN.
1540 *
1541 IF( NEP ) THEN
1542 READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
1543 DO 560 I = 1, NPARMS
1544 IF( INWIN( I ).LT.0 ) THEN
1545 WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
1546 FATAL = .TRUE.
1547 END IF
1548 560 CONTINUE
1549 WRITE( NOUT, FMT = 9983 )'INWIN: ',
1550 $ ( INWIN( I ), I = 1, NPARMS )
1551 ELSE
1552 DO 570 I = 1, NPARMS
1553 INWIN( I ) = 1
1554 570 CONTINUE
1555 END IF
1556 *
1557 * Read the values for INIBL.
1558 *
1559 IF( NEP ) THEN
1560 READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
1561 DO 580 I = 1, NPARMS
1562 IF( INIBL( I ).LT.0 ) THEN
1563 WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
1564 FATAL = .TRUE.
1565 END IF
1566 580 CONTINUE
1567 WRITE( NOUT, FMT = 9983 )'INIBL: ',
1568 $ ( INIBL( I ), I = 1, NPARMS )
1569 ELSE
1570 DO 590 I = 1, NPARMS
1571 INIBL( I ) = 1
1572 590 CONTINUE
1573 END IF
1574 *
1575 * Read the values for ISHFTS.
1576 *
1577 IF( NEP ) THEN
1578 READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
1579 DO 600 I = 1, NPARMS
1580 IF( ISHFTS( I ).LT.0 ) THEN
1581 WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
1582 FATAL = .TRUE.
1583 END IF
1584 600 CONTINUE
1585 WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
1586 $ ( ISHFTS( I ), I = 1, NPARMS )
1587 ELSE
1588 DO 610 I = 1, NPARMS
1589 ISHFTS( I ) = 1
1590 610 CONTINUE
1591 END IF
1592 *
1593 * Read the values for IACC22.
1594 *
1595 IF( NEP ) THEN
1596 READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
1597 DO 620 I = 1, NPARMS
1598 IF( IACC22( I ).LT.0 ) THEN
1599 WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
1600 FATAL = .TRUE.
1601 END IF
1602 620 CONTINUE
1603 WRITE( NOUT, FMT = 9983 )'IACC22: ',
1604 $ ( IACC22( I ), I = 1, NPARMS )
1605 ELSE
1606 DO 630 I = 1, NPARMS
1607 IACC22( I ) = 1
1608 630 CONTINUE
1609 END IF
1610 *
1611 * Read the values for NBCOL.
1612 *
1613 IF( SGG ) THEN
1614 READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
1615 DO 160 I = 1, NPARMS
1616 IF( NBCOL( I ).LT.0 ) THEN
1617 WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
1618 FATAL = .TRUE.
1619 ELSE IF( NBCOL( I ).GT.NMAX ) THEN
1620 WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
1621 FATAL = .TRUE.
1622 END IF
1623 160 CONTINUE
1624 WRITE( NOUT, FMT = 9983 )'NBCOL:',
1625 $ ( NBCOL( I ), I = 1, NPARMS )
1626 ELSE
1627 DO 170 I = 1, NPARMS
1628 NBCOL( I ) = 1
1629 170 CONTINUE
1630 END IF
1631 END IF
1632 *
1633 * Calculate and print the machine dependent constants.
1634 *
1635 WRITE( NOUT, FMT = * )
1636 EPS = SLAMCH( 'Underflow threshold' )
1637 WRITE( NOUT, FMT = 9981 )'underflow', EPS
1638 EPS = SLAMCH( 'Overflow threshold' )
1639 WRITE( NOUT, FMT = 9981 )'overflow ', EPS
1640 EPS = SLAMCH( 'Epsilon' )
1641 WRITE( NOUT, FMT = 9981 )'precision', EPS
1642 *
1643 * Read the threshold value for the test ratios.
1644 *
1645 READ( NIN, FMT = * )THRESH
1646 WRITE( NOUT, FMT = 9982 )THRESH
1647 IF( SEP .OR. SVD .OR. SGG ) THEN
1648 *
1649 * Read the flag that indicates whether to test LAPACK routines.
1650 *
1651 READ( NIN, FMT = * )TSTCHK
1652 *
1653 * Read the flag that indicates whether to test driver routines.
1654 *
1655 READ( NIN, FMT = * )TSTDRV
1656 END IF
1657 *
1658 * Read the flag that indicates whether to test the error exits.
1659 *
1660 READ( NIN, FMT = * )TSTERR
1661 *
1662 * Read the code describing how to set the random number seed.
1663 *
1664 READ( NIN, FMT = * )NEWSD
1665 *
1666 * If NEWSD = 2, read another line with 4 integers for the seed.
1667 *
1668 IF( NEWSD.EQ.2 )
1669 $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
1670 *
1671 DO 180 I = 1, 4
1672 ISEED( I ) = IOLDSD( I )
1673 180 CONTINUE
1674 *
1675 IF( FATAL ) THEN
1676 WRITE( NOUT, FMT = 9999 )
1677 STOP
1678 END IF
1679 *
1680 * Read the input lines indicating the test path and its parameters.
1681 * The first three characters indicate the test path, and the number
1682 * of test matrix types must be the first nonblank item in columns
1683 * 4-80.
1684 *
1685 190 CONTINUE
1686 *
1687 IF( .NOT.( SGX .OR. SXV ) ) THEN
1688 *
1689 200 CONTINUE
1690 READ( NIN, FMT = '(A80)', END = 380 )LINE
1691 C3 = LINE( 1: 3 )
1692 LENP = LEN( LINE )
1693 I = 3
1694 ITMP = 0
1695 I1 = 0
1696 210 CONTINUE
1697 I = I + 1
1698 IF( I.GT.LENP ) THEN
1699 IF( I1.GT.0 ) THEN
1700 GO TO 240
1701 ELSE
1702 NTYPES = MAXT
1703 GO TO 240
1704 END IF
1705 END IF
1706 IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
1707 I1 = I
1708 C1 = LINE( I1: I1 )
1709 *
1710 * Check that a valid integer was read
1711 *
1712 DO 220 K = 1, 10
1713 IF( C1.EQ.INTSTR( K: K ) ) THEN
1714 IC = K - 1
1715 GO TO 230
1716 END IF
1717 220 CONTINUE
1718 WRITE( NOUT, FMT = 9991 )I, LINE
1719 GO TO 200
1720 230 CONTINUE
1721 ITMP = 10*ITMP + IC
1722 GO TO 210
1723 ELSE IF( I1.GT.0 ) THEN
1724 GO TO 240
1725 ELSE
1726 GO TO 210
1727 END IF
1728 240 CONTINUE
1729 NTYPES = ITMP
1730 *
1731 * Skip the tests if NTYPES is <= 0.
1732 *
1733 IF( .NOT.( SEV .OR. SES .OR. SVX .OR. SSX .OR. SGV .OR.
1734 $ SGS ) .AND. NTYPES.LE.0 ) THEN
1735 WRITE( NOUT, FMT = 9990 )C3
1736 GO TO 200
1737 END IF
1738 *
1739 ELSE
1740 IF( SXV )
1741 $ C3 = 'SXV'
1742 IF( SGX )
1743 $ C3 = 'SGX'
1744 END IF
1745 *
1746 * Reset the random number seed.
1747 *
1748 IF( NEWSD.EQ.0 ) THEN
1749 DO 250 K = 1, 4
1750 ISEED( K ) = IOLDSD( K )
1751 250 CONTINUE
1752 END IF
1753 *
1754 IF( LSAMEN( 3, C3, 'SHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
1755 *
1756 * -------------------------------------
1757 * NEP: Nonsymmetric Eigenvalue Problem
1758 * -------------------------------------
1759 * Vary the parameters
1760 * NB = block size
1761 * NBMIN = minimum block size
1762 * NX = crossover point
1763 * NS = number of shifts
1764 * MAXB = minimum submatrix size
1765 *
1766 MAXTYP = 21
1767 NTYPES = MIN( MAXTYP, NTYPES )
1768 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1769 CALL XLAENV( 1, 1 )
1770 IF( TSTERR )
1771 $ CALL SERRHS( 'SHSEQR', NOUT )
1772 DO 270 I = 1, NPARMS
1773 CALL XLAENV( 1, NBVAL( I ) )
1774 CALL XLAENV( 2, NBMIN( I ) )
1775 CALL XLAENV( 3, NXVAL( I ) )
1776 CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
1777 CALL XLAENV(13, INWIN( I ) )
1778 CALL XLAENV(14, INIBL( I ) )
1779 CALL XLAENV(15, ISHFTS( I ) )
1780 CALL XLAENV(16, IACC22( I ) )
1781 *
1782 IF( NEWSD.EQ.0 ) THEN
1783 DO 260 K = 1, 4
1784 ISEED( K ) = IOLDSD( K )
1785 260 CONTINUE
1786 END IF
1787 WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
1788 $ NXVAL( I ), MAX( 11, INMIN(I)),
1789 $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
1790 CALL SCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
1791 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
1792 $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
1793 $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
1794 $ D( 1, 4 ), A( 1, 8 ), A( 1, 9 ), A( 1, 10 ),
1795 $ A( 1, 11 ), A( 1, 12 ), D( 1, 5 ), WORK, LWORK,
1796 $ IWORK, LOGWRK, RESULT, INFO )
1797 IF( INFO.NE.0 )
1798 $ WRITE( NOUT, FMT = 9980 )'SCHKHS', INFO
1799 270 CONTINUE
1800 *
1801 ELSE IF( LSAMEN( 3, C3, 'SST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
1802 *
1803 * ----------------------------------
1804 * SEP: Symmetric Eigenvalue Problem
1805 * ----------------------------------
1806 * Vary the parameters
1807 * NB = block size
1808 * NBMIN = minimum block size
1809 * NX = crossover point
1810 *
1811 MAXTYP = 21
1812 NTYPES = MIN( MAXTYP, NTYPES )
1813 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1814 CALL XLAENV( 1, 1 )
1815 CALL XLAENV( 9, 25 )
1816 IF( TSTERR )
1817 $ CALL SERRST( 'SST', NOUT )
1818 DO 290 I = 1, NPARMS
1819 CALL XLAENV( 1, NBVAL( I ) )
1820 CALL XLAENV( 2, NBMIN( I ) )
1821 CALL XLAENV( 3, NXVAL( I ) )
1822 *
1823 IF( NEWSD.EQ.0 ) THEN
1824 DO 280 K = 1, 4
1825 ISEED( K ) = IOLDSD( K )
1826 280 CONTINUE
1827 END IF
1828 WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
1829 $ NXVAL( I )
1830 IF( TSTCHK ) THEN
1831 CALL SCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
1832 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
1833 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
1834 $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
1835 $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
1836 $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
1837 $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
1838 IF( INFO.NE.0 )
1839 $ WRITE( NOUT, FMT = 9980 )'SCHKST', INFO
1840 END IF
1841 IF( TSTDRV ) THEN
1842 CALL SDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
1843 $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
1844 $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
1845 $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX,
1846 $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
1847 $ LWORK, IWORK, LIWORK, RESULT, INFO )
1848 IF( INFO.NE.0 )
1849 $ WRITE( NOUT, FMT = 9980 )'SDRVST', INFO
1850 END IF
1851 290 CONTINUE
1852 *
1853 ELSE IF( LSAMEN( 3, C3, 'SSG' ) ) THEN
1854 *
1855 * ----------------------------------------------
1856 * SSG: Symmetric Generalized Eigenvalue Problem
1857 * ----------------------------------------------
1858 * Vary the parameters
1859 * NB = block size
1860 * NBMIN = minimum block size
1861 * NX = crossover point
1862 *
1863 MAXTYP = 21
1864 NTYPES = MIN( MAXTYP, NTYPES )
1865 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1866 CALL XLAENV( 9, 25 )
1867 DO 310 I = 1, NPARMS
1868 CALL XLAENV( 1, NBVAL( I ) )
1869 CALL XLAENV( 2, NBMIN( I ) )
1870 CALL XLAENV( 3, NXVAL( I ) )
1871 *
1872 IF( NEWSD.EQ.0 ) THEN
1873 DO 300 K = 1, 4
1874 ISEED( K ) = IOLDSD( K )
1875 300 CONTINUE
1876 END IF
1877 WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
1878 $ NXVAL( I )
1879 IF( TSTCHK ) THEN
1880 CALL SDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
1881 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
1882 $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
1883 $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
1884 $ LWORK, IWORK, LIWORK, RESULT, INFO )
1885 IF( INFO.NE.0 )
1886 $ WRITE( NOUT, FMT = 9980 )'SDRVSG', INFO
1887 END IF
1888 310 CONTINUE
1889 *
1890 ELSE IF( LSAMEN( 3, C3, 'SBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
1891 *
1892 * ----------------------------------
1893 * SVD: Singular Value Decomposition
1894 * ----------------------------------
1895 * Vary the parameters
1896 * NB = block size
1897 * NBMIN = minimum block size
1898 * NX = crossover point
1899 * NRHS = number of right hand sides
1900 *
1901 MAXTYP = 16
1902 NTYPES = MIN( MAXTYP, NTYPES )
1903 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1904 CALL XLAENV( 1, 1 )
1905 CALL XLAENV( 9, 25 )
1906 *
1907 * Test the error exits
1908 *
1909 IF( TSTERR .AND. TSTCHK )
1910 $ CALL SERRBD( 'SBD', NOUT )
1911 IF( TSTERR .AND. TSTDRV )
1912 $ CALL SERRED( 'SBD', NOUT )
1913 *
1914 DO 330 I = 1, NPARMS
1915 NRHS = NSVAL( I )
1916 CALL XLAENV( 1, NBVAL( I ) )
1917 CALL XLAENV( 2, NBMIN( I ) )
1918 CALL XLAENV( 3, NXVAL( I ) )
1919 IF( NEWSD.EQ.0 ) THEN
1920 DO 320 K = 1, 4
1921 ISEED( K ) = IOLDSD( K )
1922 320 CONTINUE
1923 END IF
1924 WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
1925 $ NXVAL( I ), NRHS
1926 IF( TSTCHK ) THEN
1927 CALL SCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
1928 $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ),
1929 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ),
1930 $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX,
1931 $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK,
1932 $ LWORK, IWORK, NOUT, INFO )
1933 IF( INFO.NE.0 )
1934 $ WRITE( NOUT, FMT = 9980 )'SCHKBD', INFO
1935 END IF
1936 IF( TSTDRV )
1937 $ CALL SDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
1938 $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
1939 $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
1940 $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
1941 $ WORK, LWORK, IWORK, NOUT, INFO )
1942 330 CONTINUE
1943 *
1944 ELSE IF( LSAMEN( 3, C3, 'SEV' ) ) THEN
1945 *
1946 * --------------------------------------------
1947 * SEV: Nonsymmetric Eigenvalue Problem Driver
1948 * SGEEV (eigenvalues and eigenvectors)
1949 * --------------------------------------------
1950 *
1951 MAXTYP = 21
1952 NTYPES = MIN( MAXTYP, NTYPES )
1953 IF( NTYPES.LE.0 ) THEN
1954 WRITE( NOUT, FMT = 9990 )C3
1955 ELSE
1956 IF( TSTERR )
1957 $ CALL SERRED( C3, NOUT )
1958 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1959 CALL SDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
1960 $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
1961 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
1962 $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT,
1963 $ WORK, LWORK, IWORK, INFO )
1964 IF( INFO.NE.0 )
1965 $ WRITE( NOUT, FMT = 9980 )'SGEEV', INFO
1966 END IF
1967 WRITE( NOUT, FMT = 9973 )
1968 GO TO 10
1969 *
1970 ELSE IF( LSAMEN( 3, C3, 'SES' ) ) THEN
1971 *
1972 * --------------------------------------------
1973 * SES: Nonsymmetric Eigenvalue Problem Driver
1974 * SGEES (Schur form)
1975 * --------------------------------------------
1976 *
1977 MAXTYP = 21
1978 NTYPES = MIN( MAXTYP, NTYPES )
1979 IF( NTYPES.LE.0 ) THEN
1980 WRITE( NOUT, FMT = 9990 )C3
1981 ELSE
1982 IF( TSTERR )
1983 $ CALL SERRED( C3, NOUT )
1984 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1985 CALL SDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
1986 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
1987 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
1988 $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK,
1989 $ LOGWRK, INFO )
1990 IF( INFO.NE.0 )
1991 $ WRITE( NOUT, FMT = 9980 )'SGEES', INFO
1992 END IF
1993 WRITE( NOUT, FMT = 9973 )
1994 GO TO 10
1995 *
1996 ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
1997 *
1998 * --------------------------------------------------------------
1999 * SVX: Nonsymmetric Eigenvalue Problem Expert Driver
2000 * SGEEVX (eigenvalues, eigenvectors and condition numbers)
2001 * --------------------------------------------------------------
2002 *
2003 MAXTYP = 21
2004 NTYPES = MIN( MAXTYP, NTYPES )
2005 IF( NTYPES.LT.0 ) THEN
2006 WRITE( NOUT, FMT = 9990 )C3
2007 ELSE
2008 IF( TSTERR )
2009 $ CALL SERRED( C3, NOUT )
2010 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2011 CALL SDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
2012 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
2013 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
2014 $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX,
2015 $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ),
2016 $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ),
2017 $ RESULT, WORK, LWORK, IWORK, INFO )
2018 IF( INFO.NE.0 )
2019 $ WRITE( NOUT, FMT = 9980 )'SGEEVX', INFO
2020 END IF
2021 WRITE( NOUT, FMT = 9973 )
2022 GO TO 10
2023 *
2024 ELSE IF( LSAMEN( 3, C3, 'SSX' ) ) THEN
2025 *
2026 * ---------------------------------------------------
2027 * SSX: Nonsymmetric Eigenvalue Problem Expert Driver
2028 * SGEESX (Schur form and condition numbers)
2029 * ---------------------------------------------------
2030 *
2031 MAXTYP = 21
2032 NTYPES = MIN( MAXTYP, NTYPES )
2033 IF( NTYPES.LT.0 ) THEN
2034 WRITE( NOUT, FMT = 9990 )C3
2035 ELSE
2036 IF( TSTERR )
2037 $ CALL SERRED( C3, NOUT )
2038 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2039 CALL SDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
2040 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
2041 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
2042 $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX,
2043 $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK,
2044 $ INFO )
2045 IF( INFO.NE.0 )
2046 $ WRITE( NOUT, FMT = 9980 )'SGEESX', INFO
2047 END IF
2048 WRITE( NOUT, FMT = 9973 )
2049 GO TO 10
2050 *
2051 ELSE IF( LSAMEN( 3, C3, 'SGG' ) ) THEN
2052 *
2053 * -------------------------------------------------
2054 * SGG: Generalized Nonsymmetric Eigenvalue Problem
2055 * -------------------------------------------------
2056 * Vary the parameters
2057 * NB = block size
2058 * NBMIN = minimum block size
2059 * NS = number of shifts
2060 * MAXB = minimum submatrix size
2061 * NBCOL = minimum column dimension for blocks
2062 *
2063 MAXTYP = 26
2064 NTYPES = MIN( MAXTYP, NTYPES )
2065 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2066 IF( TSTCHK .AND. TSTERR )
2067 $ CALL SERRGG( C3, NOUT )
2068 DO 350 I = 1, NPARMS
2069 CALL XLAENV( 1, NBVAL( I ) )
2070 CALL XLAENV( 2, NBMIN( I ) )
2071 CALL XLAENV( 4, NSVAL( I ) )
2072 CALL XLAENV( 8, MXBVAL( I ) )
2073 CALL XLAENV( 5, NBCOL( I ) )
2074 *
2075 IF( NEWSD.EQ.0 ) THEN
2076 DO 340 K = 1, 4
2077 ISEED( K ) = IOLDSD( K )
2078 340 CONTINUE
2079 END IF
2080 WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
2081 $ NSVAL( I ), MXBVAL( I ), NBCOL( I )
2082 TSTDIF = .FALSE.
2083 THRSHN = 10.
2084 IF( TSTCHK ) THEN
2085 CALL SCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
2086 $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
2087 $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
2088 $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
2089 $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
2090 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
2091 $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ),
2092 $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT,
2093 $ INFO )
2094 IF( INFO.NE.0 )
2095 $ WRITE( NOUT, FMT = 9980 )'SCHKGG', INFO
2096 END IF
2097 CALL XLAENV( 1, 1 )
2098 IF( TSTDRV ) THEN
2099 CALL SDRVGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
2100 $ THRSHN, NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
2101 $ A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
2102 $ A( 1, 7 ), NMAX, A( 1, 8 ), D( 1, 1 ),
2103 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
2104 $ D( 1, 6 ), A( 1, 13 ), A( 1, 14 ), WORK,
2105 $ LWORK, RESULT, INFO )
2106 IF( INFO.NE.0 )
2107 $ WRITE( NOUT, FMT = 9980 )'SDRVGG', INFO
2108 END IF
2109 350 CONTINUE
2110 *
2111 ELSE IF( LSAMEN( 3, C3, 'SGS' ) ) THEN
2112 *
2113 * -------------------------------------------------
2114 * SGS: Generalized Nonsymmetric Eigenvalue Problem
2115 * SGGES (Schur form)
2116 * -------------------------------------------------
2117 *
2118 MAXTYP = 26
2119 NTYPES = MIN( MAXTYP, NTYPES )
2120 IF( NTYPES.LE.0 ) THEN
2121 WRITE( NOUT, FMT = 9990 )C3
2122 ELSE
2123 IF( TSTERR )
2124 $ CALL SERRGG( C3, NOUT )
2125 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2126 CALL SDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
2127 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
2128 $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
2129 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
2130 $ RESULT, LOGWRK, INFO )
2131 *
2132 IF( INFO.NE.0 )
2133 $ WRITE( NOUT, FMT = 9980 )'SDRGES', INFO
2134 END IF
2135 WRITE( NOUT, FMT = 9973 )
2136 GO TO 10
2137 *
2138 ELSE IF( SGX ) THEN
2139 *
2140 * -------------------------------------------------
2141 * SGX: Generalized Nonsymmetric Eigenvalue Problem
2142 * SGGESX (Schur form and condition numbers)
2143 * -------------------------------------------------
2144 *
2145 MAXTYP = 5
2146 NTYPES = MAXTYP
2147 IF( NN.LT.0 ) THEN
2148 WRITE( NOUT, FMT = 9990 )C3
2149 ELSE
2150 IF( TSTERR )
2151 $ CALL SERRGG( C3, NOUT )
2152 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2153 CALL XLAENV( 5, 2 )
2154 CALL SDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
2155 $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
2156 $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
2157 $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK,
2158 $ LWORK, IWORK, LIWORK, LOGWRK, INFO )
2159 IF( INFO.NE.0 )
2160 $ WRITE( NOUT, FMT = 9980 )'SDRGSX', INFO
2161 END IF
2162 WRITE( NOUT, FMT = 9973 )
2163 GO TO 10
2164 *
2165 ELSE IF( LSAMEN( 3, C3, 'SGV' ) ) THEN
2166 *
2167 * -------------------------------------------------
2168 * SGV: Generalized Nonsymmetric Eigenvalue Problem
2169 * SGGEV (Eigenvalue/vector form)
2170 * -------------------------------------------------
2171 *
2172 MAXTYP = 26
2173 NTYPES = MIN( MAXTYP, NTYPES )
2174 IF( NTYPES.LE.0 ) THEN
2175 WRITE( NOUT, FMT = 9990 )C3
2176 ELSE
2177 IF( TSTERR )
2178 $ CALL SERRGG( C3, NOUT )
2179 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2180 CALL SDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
2181 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
2182 $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
2183 $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
2184 $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
2185 $ WORK, LWORK, RESULT, INFO )
2186 IF( INFO.NE.0 )
2187 $ WRITE( NOUT, FMT = 9980 )'SDRGEV', INFO
2188 END IF
2189 WRITE( NOUT, FMT = 9973 )
2190 GO TO 10
2191 *
2192 ELSE IF( SXV ) THEN
2193 *
2194 * -------------------------------------------------
2195 * SXV: Generalized Nonsymmetric Eigenvalue Problem
2196 * SGGEVX (eigenvalue/vector with condition numbers)
2197 * -------------------------------------------------
2198 *
2199 MAXTYP = 2
2200 NTYPES = MAXTYP
2201 IF( NN.LT.0 ) THEN
2202 WRITE( NOUT, FMT = 9990 )C3
2203 ELSE
2204 IF( TSTERR )
2205 $ CALL SERRGG( C3, NOUT )
2206 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2207 CALL SDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
2208 $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ),
2209 $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ),
2210 $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ),
2211 $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
2212 $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT,
2213 $ LOGWRK, INFO )
2214 *
2215 IF( INFO.NE.0 )
2216 $ WRITE( NOUT, FMT = 9980 )'SDRGVX', INFO
2217 END IF
2218 WRITE( NOUT, FMT = 9973 )
2219 GO TO 10
2220 *
2221 ELSE IF( LSAMEN( 3, C3, 'SSB' ) ) THEN
2222 *
2223 * ------------------------------
2224 * SSB: Symmetric Band Reduction
2225 * ------------------------------
2226 *
2227 MAXTYP = 15
2228 NTYPES = MIN( MAXTYP, NTYPES )
2229 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2230 IF( TSTERR )
2231 $ CALL SERRST( 'SSB', NOUT )
2232 CALL SCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
2233 $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
2234 $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
2235 IF( INFO.NE.0 )
2236 $ WRITE( NOUT, FMT = 9980 )'SCHKSB', INFO
2237 *
2238 ELSE IF( LSAMEN( 3, C3, 'SBB' ) ) THEN
2239 *
2240 * ------------------------------
2241 * SBB: General Band Reduction
2242 * ------------------------------
2243 *
2244 MAXTYP = 15
2245 NTYPES = MIN( MAXTYP, NTYPES )
2246 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2247 DO 370 I = 1, NPARMS
2248 NRHS = NSVAL( I )
2249 *
2250 IF( NEWSD.EQ.0 ) THEN
2251 DO 360 K = 1, 4
2252 ISEED( K ) = IOLDSD( K )
2253 360 CONTINUE
2254 END IF
2255 WRITE( NOUT, FMT = 9966 )C3, NRHS
2256 CALL SCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
2257 $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
2258 $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ),
2259 $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
2260 $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO )
2261 IF( INFO.NE.0 )
2262 $ WRITE( NOUT, FMT = 9980 )'SCHKBB', INFO
2263 370 CONTINUE
2264 *
2265 ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
2266 *
2267 * -----------------------------------------
2268 * GLM: Generalized Linear Regression Model
2269 * -----------------------------------------
2270 *
2271 CALL XLAENV( 1, 1 )
2272 IF( TSTERR )
2273 $ CALL SERRGG( 'GLM', NOUT )
2274 CALL SCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2275 $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
2276 $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
2277 IF( INFO.NE.0 )
2278 $ WRITE( NOUT, FMT = 9980 )'SCKGLM', INFO
2279 *
2280 ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
2281 *
2282 * ------------------------------------------
2283 * GQR: Generalized QR and RQ factorizations
2284 * ------------------------------------------
2285 *
2286 CALL XLAENV( 1, 1 )
2287 IF( TSTERR )
2288 $ CALL SERRGG( 'GQR', NOUT )
2289 CALL SCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
2290 $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
2291 $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
2292 $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN,
2293 $ NOUT, INFO )
2294 IF( INFO.NE.0 )
2295 $ WRITE( NOUT, FMT = 9980 )'SCKGQR', INFO
2296 *
2297 ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
2298 *
2299 * ----------------------------------------------
2300 * GSV: Generalized Singular Value Decomposition
2301 * ----------------------------------------------
2302 *
2303 IF( TSTERR )
2304 $ CALL SERRGG( 'GSV', NOUT )
2305 CALL SCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2306 $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
2307 $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB,
2308 $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT,
2309 $ INFO )
2310 IF( INFO.NE.0 )
2311 $ WRITE( NOUT, FMT = 9980 )'SCKGSV', INFO
2312 *
2313 ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
2314 *
2315 * ----------------------------------------------
2316 * CSD: CS Decomposition
2317 * ----------------------------------------------
2318 *
2319 IF( TSTERR )
2320 $ CALL SERRGG( 'CSD', NOUT )
2321 CALL SCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2322 $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
2323 $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK,
2324 $ D( 1, 1 ), NIN, NOUT, INFO )
2325 IF( INFO.NE.0 )
2326 $ WRITE( NOUT, FMT = 9980 )'SCKCSD', INFO
2327 *
2328 ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
2329 *
2330 * --------------------------------------
2331 * LSE: Constrained Linear Least Squares
2332 * --------------------------------------
2333 *
2334 CALL XLAENV( 1, 1 )
2335 IF( TSTERR )
2336 $ CALL SERRGG( 'LSE', NOUT )
2337 CALL SCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2338 $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
2339 $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
2340 IF( INFO.NE.0 )
2341 $ WRITE( NOUT, FMT = 9980 )'SCKLSE', INFO
2342 *
2343 ELSE
2344 WRITE( NOUT, FMT = * )
2345 WRITE( NOUT, FMT = * )
2346 WRITE( NOUT, FMT = 9992 )C3
2347 END IF
2348 IF( .NOT.( SGX .OR. SXV ) )
2349 $ GO TO 190
2350 380 CONTINUE
2351 WRITE( NOUT, FMT = 9994 )
2352 S2 = SECOND( )
2353 WRITE( NOUT, FMT = 9993 )S2 - S1
2354 *
2355 9999 FORMAT( / ' Execution not attempted due to input errors' )
2356 9998 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
2357 $ ', NS =', I4, ', MAXB =', I4 )
2358 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
2359 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
2360 $ ', MAXB =', I4, ', NBCOL =', I4 )
2361 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
2362 $ ', NRHS =', I4 )
2363 9994 FORMAT( / / ' End of tests' )
2364 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
2365 9992 FORMAT( 1X, A3, ': Unrecognized path name' )
2366 9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
2367 $ ' of input', ' line:', / A79 )
2368 9990 FORMAT( / / 1X, A3, ' routines were not tested' )
2369 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
2370 $ I6 )
2371 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
2372 $ I6 )
2373 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
2374 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' )
2375 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
2376 9984 FORMAT( / ' The following parameter values will be used:' )
2377 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
2378 9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
2379 $ 'less than', F8.2, / )
2380 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 )
2381 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
2382 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
2383 $ / ' SGEEV (eigenvalues and eigevectors)' )
2384 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
2385 $ / ' SGEES (Schur form)' )
2386 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
2387 $ ' Driver', / ' SGEEVX (eigenvalues, eigenvectors and',
2388 $ ' condition numbers)' )
2389 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
2390 $ ' Driver', / ' SGEESX (Schur form and condition',
2391 $ ' numbers)' )
2392 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2393 $ 'Problem routines' )
2394 9974 FORMAT( ' Tests of SSBTRD', / ' (reduction of a symmetric band ',
2395 $ 'matrix to tridiagonal form)' )
2396 9973 FORMAT( / 1X, 71( '-' ) )
2397 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
2398 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
2399 $ 'routines' )
2400 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
2401 9969 FORMAT( / ' Tests of the Generalized Singular Value',
2402 $ ' Decomposition routines' )
2403 9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
2404 9967 FORMAT( ' Tests of SGBBRD', / ' (reduction of a general band ',
2405 $ 'matrix to real bidiagonal form)' )
2406 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
2407 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2408 $ 'Problem Expert Driver SGGESX' )
2409 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2410 $ 'Problem Driver SGGES' )
2411 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2412 $ 'Problem Driver SGGEV' )
2413 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2414 $ 'Problem Expert Driver SGGEVX' )
2415 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
2416 $ ', INMIN=', I4,
2417 $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
2418 $ ', IACC22 =', I4)
2419 9960 FORMAT( / ' Tests of the CS Decomposition routines' )
2420 *
2421 * End of SCHKEE
2422 *
2423 END
2 *
3 * -- LAPACK test routine (version 3.1.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * February 2007
6 *
7 * Purpose
8 * =======
9 *
10 * SCHKEE tests the REAL LAPACK subroutines for the matrix
11 * eigenvalue problem. The test paths in this version are
12 *
13 * NEP (Nonsymmetric Eigenvalue Problem):
14 * Test SGEHRD, SORGHR, SHSEQR, STREVC, SHSEIN, and SORMHR
15 *
16 * SEP (Symmetric Eigenvalue Problem):
17 * Test SSYTRD, SORGTR, SSTEQR, SSTERF, SSTEIN, SSTEDC,
18 * and drivers SSYEV(X), SSBEV(X), SSPEV(X), SSTEV(X),
19 * SSYEVD, SSBEVD, SSPEVD, SSTEVD
20 *
21 * SVD (Singular Value Decomposition):
22 * Test SGEBRD, SORGBR, SBDSQR, SBDSDC
23 * and the drivers SGESVD, SGESDD
24 *
25 * SEV (Nonsymmetric Eigenvalue/eigenvector Driver):
26 * Test SGEEV
27 *
28 * SES (Nonsymmetric Schur form Driver):
29 * Test SGEES
30 *
31 * SVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
32 * Test SGEEVX
33 *
34 * SSX (Nonsymmetric Schur form Expert Driver):
35 * Test SGEESX
36 *
37 * SGG (Generalized Nonsymmetric Eigenvalue Problem):
38 * Test SGGHRD, SGGBAL, SGGBAK, SHGEQZ, and STGEVC
39 * and the driver routines SGEGS and SGEGV
40 *
41 * SGS (Generalized Nonsymmetric Schur form Driver):
42 * Test SGGES
43 *
44 * SGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
45 * Test SGGEV
46 *
47 * SGX (Generalized Nonsymmetric Schur form Expert Driver):
48 * Test SGGESX
49 *
50 * SXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
51 * Test SGGEVX
52 *
53 * SSG (Symmetric Generalized Eigenvalue Problem):
54 * Test SSYGST, SSYGV, SSYGVD, SSYGVX, SSPGST, SSPGV, SSPGVD,
55 * SSPGVX, SSBGST, SSBGV, SSBGVD, and SSBGVX
56 *
57 * SSB (Symmetric Band Eigenvalue Problem):
58 * Test SSBTRD
59 *
60 * SBB (Band Singular Value Decomposition):
61 * Test SGBBRD
62 *
63 * SEC (Eigencondition estimation):
64 * Test SLALN2, SLASY2, SLAEQU, SLAEXC, STRSYL, STREXC, STRSNA,
65 * STRSEN, and SLAQTR
66 *
67 * SBL (Balancing a general matrix)
68 * Test SGEBAL
69 *
70 * SBK (Back transformation on a balanced matrix)
71 * Test SGEBAK
72 *
73 * SGL (Balancing a matrix pair)
74 * Test SGGBAL
75 *
76 * SGK (Back transformation on a matrix pair)
77 * Test SGGBAK
78 *
79 * GLM (Generalized Linear Regression Model):
80 * Tests SGGGLM
81 *
82 * GQR (Generalized QR and RQ factorizations):
83 * Tests SGGQRF and SGGRQF
84 *
85 * GSV (Generalized Singular Value Decomposition):
86 * Tests SGGSVD, SGGSVP, STGSJA, SLAGS2, SLAPLL, and SLAPMT
87 *
88 * CSD (CS decomposition):
89 * Tests SORCSD
90 *
91 * LSE (Constrained Linear Least Squares):
92 * Tests SGGLSE
93 *
94 * Each test path has a different set of inputs, but the data sets for
95 * the driver routines xEV, xES, xVX, and xSX can be concatenated in a
96 * single input file. The first line of input should contain one of the
97 * 3-character path names in columns 1-3. The number of remaining lines
98 * depends on what is found on the first line.
99 *
100 * The number of matrix types used in testing is often controllable from
101 * the input file. The number of matrix types for each path, and the
102 * test routine that describes them, is as follows:
103 *
104 * Path name(s) Types Test routine
105 *
106 * SHS or NEP 21 SCHKHS
107 * SST or SEP 21 SCHKST (routines)
108 * 18 SDRVST (drivers)
109 * SBD or SVD 16 SCHKBD (routines)
110 * 5 SDRVBD (drivers)
111 * SEV 21 SDRVEV
112 * SES 21 SDRVES
113 * SVX 21 SDRVVX
114 * SSX 21 SDRVSX
115 * SGG 26 SCHKGG (routines)
116 * 26 SDRVGG (drivers)
117 * SGS 26 SDRGES
118 * SGX 5 SDRGSX
119 * SGV 26 SDRGEV
120 * SXV 2 SDRGVX
121 * SSG 21 SDRVSG
122 * SSB 15 SCHKSB
123 * SBB 15 SCHKBB
124 * SEC - SCHKEC
125 * SBL - SCHKBL
126 * SBK - SCHKBK
127 * SGL - SCHKGL
128 * SGK - SCHKGK
129 * GLM 8 SCKGLM
130 * GQR 8 SCKGQR
131 * GSV 8 SCKGSV
132 * CSD 3 SCKCSD
133 * LSE 8 SCKLSE
134 *
135 *-----------------------------------------------------------------------
136 *
137 * NEP input file:
138 *
139 * line 2: NN, INTEGER
140 * Number of values of N.
141 *
142 * line 3: NVAL, INTEGER array, dimension (NN)
143 * The values for the matrix dimension N.
144 *
145 * line 4: NPARMS, INTEGER
146 * Number of values of the parameters NB, NBMIN, NX, NS, and
147 * MAXB.
148 *
149 * line 5: NBVAL, INTEGER array, dimension (NPARMS)
150 * The values for the blocksize NB.
151 *
152 * line 6: NBMIN, INTEGER array, dimension (NPARMS)
153 * The values for the minimum blocksize NBMIN.
154 *
155 * line 7: NXVAL, INTEGER array, dimension (NPARMS)
156 * The values for the crossover point NX.
157 *
158 * line 8: INMIN, INTEGER array, dimension (NPARMS)
159 * LAHQR vs TTQRE crossover point, >= 11
160 *
161 * line 9: INWIN, INTEGER array, dimension (NPARMS)
162 * recommended deflation window size
163 *
164 * line 10: INIBL, INTEGER array, dimension (NPARMS)
165 * nibble crossover point
166 *
167 * line 11: ISHFTS, INTEGER array, dimension (NPARMS)
168 * number of simultaneous shifts)
169 *
170 * line 12: IACC22, INTEGER array, dimension (NPARMS)
171 * select structured matrix multiply: 0, 1 or 2)
172 *
173 * line 13: THRESH
174 * Threshold value for the test ratios. Information will be
175 * printed about each test for which the test ratio is greater
176 * than or equal to the threshold. To have all of the test
177 * ratios printed, use THRESH = 0.0 .
178 *
179 * line 14: NEWSD, INTEGER
180 * A code indicating how to set the random number seed.
181 * = 0: Set the seed to a default value before each run
182 * = 1: Initialize the seed to a default value only before the
183 * first run
184 * = 2: Like 1, but use the seed values on the next line
185 *
186 * If line 14 was 2:
187 *
188 * line 15: INTEGER array, dimension (4)
189 * Four integer values for the random number seed.
190 *
191 * lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
192 * the user to specify the matrix types. Each line contains
193 * a 3-character path name in columns 1-3, and the number
194 * of matrix types must be the first nonblank item in columns
195 * 4-80. If the number of matrix types is at least 1 but is
196 * less than the maximum number of possible types, a second
197 * line will be read to get the numbers of the matrix types to
198 * be used. For example,
199 * NEP 21
200 * requests all of the matrix types for the nonsymmetric
201 * eigenvalue problem, while
202 * NEP 4
203 * 9 10 11 12
204 * requests only matrices of type 9, 10, 11, and 12.
205 *
206 * The valid 3-character path names are 'NEP' or 'SHS' for the
207 * nonsymmetric eigenvalue routines.
208 *
209 *-----------------------------------------------------------------------
210 *
211 * SEP or SSG input file:
212 *
213 * line 2: NN, INTEGER
214 * Number of values of N.
215 *
216 * line 3: NVAL, INTEGER array, dimension (NN)
217 * The values for the matrix dimension N.
218 *
219 * line 4: NPARMS, INTEGER
220 * Number of values of the parameters NB, NBMIN, and NX.
221 *
222 * line 5: NBVAL, INTEGER array, dimension (NPARMS)
223 * The values for the blocksize NB.
224 *
225 * line 6: NBMIN, INTEGER array, dimension (NPARMS)
226 * The values for the minimum blocksize NBMIN.
227 *
228 * line 7: NXVAL, INTEGER array, dimension (NPARMS)
229 * The values for the crossover point NX.
230 *
231 * line 8: THRESH
232 * Threshold value for the test ratios. Information will be
233 * printed about each test for which the test ratio is greater
234 * than or equal to the threshold.
235 *
236 * line 9: TSTCHK, LOGICAL
237 * Flag indicating whether or not to test the LAPACK routines.
238 *
239 * line 10: TSTDRV, LOGICAL
240 * Flag indicating whether or not to test the driver routines.
241 *
242 * line 11: TSTERR, LOGICAL
243 * Flag indicating whether or not to test the error exits for
244 * the LAPACK routines and driver routines.
245 *
246 * line 12: NEWSD, INTEGER
247 * A code indicating how to set the random number seed.
248 * = 0: Set the seed to a default value before each run
249 * = 1: Initialize the seed to a default value only before the
250 * first run
251 * = 2: Like 1, but use the seed values on the next line
252 *
253 * If line 12 was 2:
254 *
255 * line 13: INTEGER array, dimension (4)
256 * Four integer values for the random number seed.
257 *
258 * lines 13-EOF: Lines specifying matrix types, as for NEP.
259 * The 3-character path names are 'SEP' or 'SST' for the
260 * symmetric eigenvalue routines and driver routines, and
261 * 'SSG' for the routines for the symmetric generalized
262 * eigenvalue problem.
263 *
264 *-----------------------------------------------------------------------
265 *
266 * SVD input file:
267 *
268 * line 2: NN, INTEGER
269 * Number of values of M and N.
270 *
271 * line 3: MVAL, INTEGER array, dimension (NN)
272 * The values for the matrix row dimension M.
273 *
274 * line 4: NVAL, INTEGER array, dimension (NN)
275 * The values for the matrix column dimension N.
276 *
277 * line 5: NPARMS, INTEGER
278 * Number of values of the parameter NB, NBMIN, NX, and NRHS.
279 *
280 * line 6: NBVAL, INTEGER array, dimension (NPARMS)
281 * The values for the blocksize NB.
282 *
283 * line 7: NBMIN, INTEGER array, dimension (NPARMS)
284 * The values for the minimum blocksize NBMIN.
285 *
286 * line 8: NXVAL, INTEGER array, dimension (NPARMS)
287 * The values for the crossover point NX.
288 *
289 * line 9: NSVAL, INTEGER array, dimension (NPARMS)
290 * The values for the number of right hand sides NRHS.
291 *
292 * line 10: THRESH
293 * Threshold value for the test ratios. Information will be
294 * printed about each test for which the test ratio is greater
295 * than or equal to the threshold.
296 *
297 * line 11: TSTCHK, LOGICAL
298 * Flag indicating whether or not to test the LAPACK routines.
299 *
300 * line 12: TSTDRV, LOGICAL
301 * Flag indicating whether or not to test the driver routines.
302 *
303 * line 13: TSTERR, LOGICAL
304 * Flag indicating whether or not to test the error exits for
305 * the LAPACK routines and driver routines.
306 *
307 * line 14: NEWSD, INTEGER
308 * A code indicating how to set the random number seed.
309 * = 0: Set the seed to a default value before each run
310 * = 1: Initialize the seed to a default value only before the
311 * first run
312 * = 2: Like 1, but use the seed values on the next line
313 *
314 * If line 14 was 2:
315 *
316 * line 15: INTEGER array, dimension (4)
317 * Four integer values for the random number seed.
318 *
319 * lines 15-EOF: Lines specifying matrix types, as for NEP.
320 * The 3-character path names are 'SVD' or 'SBD' for both the
321 * SVD routines and the SVD driver routines.
322 *
323 *-----------------------------------------------------------------------
324 *
325 * SEV and SES data files:
326 *
327 * line 1: 'SEV' or 'SES' in columns 1 to 3.
328 *
329 * line 2: NSIZES, INTEGER
330 * Number of sizes of matrices to use. Should be at least 0
331 * and at most 20. If NSIZES = 0, no testing is done
332 * (although the remaining 3 lines are still read).
333 *
334 * line 3: NN, INTEGER array, dimension(NSIZES)
335 * Dimensions of matrices to be tested.
336 *
337 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
338 * These integer parameters determine how blocking is done
339 * (see ILAENV for details)
340 * NB : block size
341 * NBMIN : minimum block size
342 * NX : minimum dimension for blocking
343 * NS : number of shifts in xHSEQR
344 * NBCOL : minimum column dimension for blocking
345 *
346 * line 5: THRESH, REAL
347 * The test threshold against which computed residuals are
348 * compared. Should generally be in the range from 10. to 20.
349 * If it is 0., all test case data will be printed.
350 *
351 * line 6: TSTERR, LOGICAL
352 * Flag indicating whether or not to test the error exits.
353 *
354 * line 7: NEWSD, INTEGER
355 * A code indicating how to set the random number seed.
356 * = 0: Set the seed to a default value before each run
357 * = 1: Initialize the seed to a default value only before the
358 * first run
359 * = 2: Like 1, but use the seed values on the next line
360 *
361 * If line 7 was 2:
362 *
363 * line 8: INTEGER array, dimension (4)
364 * Four integer values for the random number seed.
365 *
366 * lines 9 and following: Lines specifying matrix types, as for NEP.
367 * The 3-character path name is 'SEV' to test SGEEV, or
368 * 'SES' to test SGEES.
369 *
370 *-----------------------------------------------------------------------
371 *
372 * The SVX data has two parts. The first part is identical to SEV,
373 * and the second part consists of test matrices with precomputed
374 * solutions.
375 *
376 * line 1: 'SVX' in columns 1-3.
377 *
378 * line 2: NSIZES, INTEGER
379 * If NSIZES = 0, no testing of randomly generated examples
380 * is done, but any precomputed examples are tested.
381 *
382 * line 3: NN, INTEGER array, dimension(NSIZES)
383 *
384 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
385 *
386 * line 5: THRESH, REAL
387 *
388 * line 6: TSTERR, LOGICAL
389 *
390 * line 7: NEWSD, INTEGER
391 *
392 * If line 7 was 2:
393 *
394 * line 8: INTEGER array, dimension (4)
395 *
396 * lines 9 and following: The first line contains 'SVX' in columns 1-3
397 * followed by the number of matrix types, possibly with
398 * a second line to specify certain matrix types.
399 * If the number of matrix types = 0, no testing of randomly
400 * generated examples is done, but any precomputed examples
401 * are tested.
402 *
403 * remaining lines : Each matrix is stored on 1+2*N lines, where N is
404 * its dimension. The first line contains the dimension (a
405 * single integer). The next N lines contain the matrix, one
406 * row per line. The last N lines correspond to each
407 * eigenvalue. Each of these last N lines contains 4 real
408 * values: the real part of the eigenvalue, the imaginary
409 * part of the eigenvalue, the reciprocal condition number of
410 * the eigenvalues, and the reciprocal condition number of the
411 * eigenvector. The end of data is indicated by dimension N=0.
412 * Even if no data is to be tested, there must be at least one
413 * line containing N=0.
414 *
415 *-----------------------------------------------------------------------
416 *
417 * The SSX data is like SVX. The first part is identical to SEV, and the
418 * second part consists of test matrices with precomputed solutions.
419 *
420 * line 1: 'SSX' in columns 1-3.
421 *
422 * line 2: NSIZES, INTEGER
423 * If NSIZES = 0, no testing of randomly generated examples
424 * is done, but any precomputed examples are tested.
425 *
426 * line 3: NN, INTEGER array, dimension(NSIZES)
427 *
428 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
429 *
430 * line 5: THRESH, REAL
431 *
432 * line 6: TSTERR, LOGICAL
433 *
434 * line 7: NEWSD, INTEGER
435 *
436 * If line 7 was 2:
437 *
438 * line 8: INTEGER array, dimension (4)
439 *
440 * lines 9 and following: The first line contains 'SSX' in columns 1-3
441 * followed by the number of matrix types, possibly with
442 * a second line to specify certain matrix types.
443 * If the number of matrix types = 0, no testing of randomly
444 * generated examples is done, but any precomputed examples
445 * are tested.
446 *
447 * remaining lines : Each matrix is stored on 3+N lines, where N is its
448 * dimension. The first line contains the dimension N and the
449 * dimension M of an invariant subspace. The second line
450 * contains M integers, identifying the eigenvalues in the
451 * invariant subspace (by their position in a list of
452 * eigenvalues ordered by increasing real part). The next N
453 * lines contain the matrix. The last line contains the
454 * reciprocal condition number for the average of the selected
455 * eigenvalues, and the reciprocal condition number for the
456 * corresponding right invariant subspace. The end of data is
457 * indicated by a line containing N=0 and M=0. Even if no data
458 * is to be tested, there must be at least one line containing
459 * N=0 and M=0.
460 *
461 *-----------------------------------------------------------------------
462 *
463 * SGG input file:
464 *
465 * line 2: NN, INTEGER
466 * Number of values of N.
467 *
468 * line 3: NVAL, INTEGER array, dimension (NN)
469 * The values for the matrix dimension N.
470 *
471 * line 4: NPARMS, INTEGER
472 * Number of values of the parameters NB, NBMIN, NS, MAXB, and
473 * NBCOL.
474 *
475 * line 5: NBVAL, INTEGER array, dimension (NPARMS)
476 * The values for the blocksize NB.
477 *
478 * line 6: NBMIN, INTEGER array, dimension (NPARMS)
479 * The values for NBMIN, the minimum row dimension for blocks.
480 *
481 * line 7: NSVAL, INTEGER array, dimension (NPARMS)
482 * The values for the number of shifts.
483 *
484 * line 8: MXBVAL, INTEGER array, dimension (NPARMS)
485 * The values for MAXB, used in determining minimum blocksize.
486 *
487 * line 9: NBCOL, INTEGER array, dimension (NPARMS)
488 * The values for NBCOL, the minimum column dimension for
489 * blocks.
490 *
491 * line 10: THRESH
492 * Threshold value for the test ratios. Information will be
493 * printed about each test for which the test ratio is greater
494 * than or equal to the threshold.
495 *
496 * line 11: TSTCHK, LOGICAL
497 * Flag indicating whether or not to test the LAPACK routines.
498 *
499 * line 12: TSTDRV, LOGICAL
500 * Flag indicating whether or not to test the driver routines.
501 *
502 * line 13: TSTERR, LOGICAL
503 * Flag indicating whether or not to test the error exits for
504 * the LAPACK routines and driver routines.
505 *
506 * line 14: NEWSD, INTEGER
507 * A code indicating how to set the random number seed.
508 * = 0: Set the seed to a default value before each run
509 * = 1: Initialize the seed to a default value only before the
510 * first run
511 * = 2: Like 1, but use the seed values on the next line
512 *
513 * If line 14 was 2:
514 *
515 * line 15: INTEGER array, dimension (4)
516 * Four integer values for the random number seed.
517 *
518 * lines 15-EOF: Lines specifying matrix types, as for NEP.
519 * The 3-character path name is 'SGG' for the generalized
520 * eigenvalue problem routines and driver routines.
521 *
522 *-----------------------------------------------------------------------
523 *
524 * SGS and SGV input files:
525 *
526 * line 1: 'SGS' or 'SGV' in columns 1 to 3.
527 *
528 * line 2: NN, INTEGER
529 * Number of values of N.
530 *
531 * line 3: NVAL, INTEGER array, dimension(NN)
532 * Dimensions of matrices to be tested.
533 *
534 * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
535 * These integer parameters determine how blocking is done
536 * (see ILAENV for details)
537 * NB : block size
538 * NBMIN : minimum block size
539 * NX : minimum dimension for blocking
540 * NS : number of shifts in xHGEQR
541 * NBCOL : minimum column dimension for blocking
542 *
543 * line 5: THRESH, REAL
544 * The test threshold against which computed residuals are
545 * compared. Should generally be in the range from 10. to 20.
546 * If it is 0., all test case data will be printed.
547 *
548 * line 6: TSTERR, LOGICAL
549 * Flag indicating whether or not to test the error exits.
550 *
551 * line 7: NEWSD, INTEGER
552 * A code indicating how to set the random number seed.
553 * = 0: Set the seed to a default value before each run
554 * = 1: Initialize the seed to a default value only before the
555 * first run
556 * = 2: Like 1, but use the seed values on the next line
557 *
558 * If line 17 was 2:
559 *
560 * line 7: INTEGER array, dimension (4)
561 * Four integer values for the random number seed.
562 *
563 * lines 7-EOF: Lines specifying matrix types, as for NEP.
564 * The 3-character path name is 'SGS' for the generalized
565 * eigenvalue problem routines and driver routines.
566 *
567 *-----------------------------------------------------------------------
568 *
569 * SXV input files:
570 *
571 * line 1: 'SXV' in columns 1 to 3.
572 *
573 * line 2: N, INTEGER
574 * Value of N.
575 *
576 * line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
577 * These integer parameters determine how blocking is done
578 * (see ILAENV for details)
579 * NB : block size
580 * NBMIN : minimum block size
581 * NX : minimum dimension for blocking
582 * NS : number of shifts in xHGEQR
583 * NBCOL : minimum column dimension for blocking
584 *
585 * line 4: THRESH, REAL
586 * The test threshold against which computed residuals are
587 * compared. Should generally be in the range from 10. to 20.
588 * Information will be printed about each test for which the
589 * test ratio is greater than or equal to the threshold.
590 *
591 * line 5: TSTERR, LOGICAL
592 * Flag indicating whether or not to test the error exits for
593 * the LAPACK routines and driver routines.
594 *
595 * line 6: NEWSD, INTEGER
596 * A code indicating how to set the random number seed.
597 * = 0: Set the seed to a default value before each run
598 * = 1: Initialize the seed to a default value only before the
599 * first run
600 * = 2: Like 1, but use the seed values on the next line
601 *
602 * If line 6 was 2:
603 *
604 * line 7: INTEGER array, dimension (4)
605 * Four integer values for the random number seed.
606 *
607 * If line 2 was 0:
608 *
609 * line 7-EOF: Precomputed examples are tested.
610 *
611 * remaining lines : Each example is stored on 3+2*N lines, where N is
612 * its dimension. The first line contains the dimension (a
613 * single integer). The next N lines contain the matrix A, one
614 * row per line. The next N lines contain the matrix B. The
615 * next line contains the reciprocals of the eigenvalue
616 * condition numbers. The last line contains the reciprocals of
617 * the eigenvector condition numbers. The end of data is
618 * indicated by dimension N=0. Even if no data is to be tested,
619 * there must be at least one line containing N=0.
620 *
621 *-----------------------------------------------------------------------
622 *
623 * SGX input files:
624 *
625 * line 1: 'SGX' in columns 1 to 3.
626 *
627 * line 2: N, INTEGER
628 * Value of N.
629 *
630 * line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
631 * These integer parameters determine how blocking is done
632 * (see ILAENV for details)
633 * NB : block size
634 * NBMIN : minimum block size
635 * NX : minimum dimension for blocking
636 * NS : number of shifts in xHGEQR
637 * NBCOL : minimum column dimension for blocking
638 *
639 * line 4: THRESH, REAL
640 * The test threshold against which computed residuals are
641 * compared. Should generally be in the range from 10. to 20.
642 * Information will be printed about each test for which the
643 * test ratio is greater than or equal to the threshold.
644 *
645 * line 5: TSTERR, LOGICAL
646 * Flag indicating whether or not to test the error exits for
647 * the LAPACK routines and driver routines.
648 *
649 * line 6: NEWSD, INTEGER
650 * A code indicating how to set the random number seed.
651 * = 0: Set the seed to a default value before each run
652 * = 1: Initialize the seed to a default value only before the
653 * first run
654 * = 2: Like 1, but use the seed values on the next line
655 *
656 * If line 6 was 2:
657 *
658 * line 7: INTEGER array, dimension (4)
659 * Four integer values for the random number seed.
660 *
661 * If line 2 was 0:
662 *
663 * line 7-EOF: Precomputed examples are tested.
664 *
665 * remaining lines : Each example is stored on 3+2*N lines, where N is
666 * its dimension. The first line contains the dimension (a
667 * single integer). The next line contains an integer k such
668 * that only the last k eigenvalues will be selected and appear
669 * in the leading diagonal blocks of $A$ and $B$. The next N
670 * lines contain the matrix A, one row per line. The next N
671 * lines contain the matrix B. The last line contains the
672 * reciprocal of the eigenvalue cluster condition number and the
673 * reciprocal of the deflating subspace (associated with the
674 * selected eigencluster) condition number. The end of data is
675 * indicated by dimension N=0. Even if no data is to be tested,
676 * there must be at least one line containing N=0.
677 *
678 *-----------------------------------------------------------------------
679 *
680 * SSB input file:
681 *
682 * line 2: NN, INTEGER
683 * Number of values of N.
684 *
685 * line 3: NVAL, INTEGER array, dimension (NN)
686 * The values for the matrix dimension N.
687 *
688 * line 4: NK, INTEGER
689 * Number of values of K.
690 *
691 * line 5: KVAL, INTEGER array, dimension (NK)
692 * The values for the matrix dimension K.
693 *
694 * line 6: THRESH
695 * Threshold value for the test ratios. Information will be
696 * printed about each test for which the test ratio is greater
697 * than or equal to the threshold.
698 *
699 * line 7: NEWSD, INTEGER
700 * A code indicating how to set the random number seed.
701 * = 0: Set the seed to a default value before each run
702 * = 1: Initialize the seed to a default value only before the
703 * first run
704 * = 2: Like 1, but use the seed values on the next line
705 *
706 * If line 7 was 2:
707 *
708 * line 8: INTEGER array, dimension (4)
709 * Four integer values for the random number seed.
710 *
711 * lines 8-EOF: Lines specifying matrix types, as for NEP.
712 * The 3-character path name is 'SSB'.
713 *
714 *-----------------------------------------------------------------------
715 *
716 * SBB input file:
717 *
718 * line 2: NN, INTEGER
719 * Number of values of M and N.
720 *
721 * line 3: MVAL, INTEGER array, dimension (NN)
722 * The values for the matrix row dimension M.
723 *
724 * line 4: NVAL, INTEGER array, dimension (NN)
725 * The values for the matrix column dimension N.
726 *
727 * line 4: NK, INTEGER
728 * Number of values of K.
729 *
730 * line 5: KVAL, INTEGER array, dimension (NK)
731 * The values for the matrix bandwidth K.
732 *
733 * line 6: NPARMS, INTEGER
734 * Number of values of the parameter NRHS
735 *
736 * line 7: NSVAL, INTEGER array, dimension (NPARMS)
737 * The values for the number of right hand sides NRHS.
738 *
739 * line 8: THRESH
740 * Threshold value for the test ratios. Information will be
741 * printed about each test for which the test ratio is greater
742 * than or equal to the threshold.
743 *
744 * line 9: NEWSD, INTEGER
745 * A code indicating how to set the random number seed.
746 * = 0: Set the seed to a default value before each run
747 * = 1: Initialize the seed to a default value only before the
748 * first run
749 * = 2: Like 1, but use the seed values on the next line
750 *
751 * If line 9 was 2:
752 *
753 * line 10: INTEGER array, dimension (4)
754 * Four integer values for the random number seed.
755 *
756 * lines 10-EOF: Lines specifying matrix types, as for SVD.
757 * The 3-character path name is 'SBB'.
758 *
759 *-----------------------------------------------------------------------
760 *
761 * SEC input file:
762 *
763 * line 2: THRESH, REAL
764 * Threshold value for the test ratios. Information will be
765 * printed about each test for which the test ratio is greater
766 * than or equal to the threshold.
767 *
768 * lines 3-EOF:
769 *
770 * Input for testing the eigencondition routines consists of a set of
771 * specially constructed test cases and their solutions. The data
772 * format is not intended to be modified by the user.
773 *
774 *-----------------------------------------------------------------------
775 *
776 * SBL and SBK input files:
777 *
778 * line 1: 'SBL' in columns 1-3 to test SGEBAL, or 'SBK' in
779 * columns 1-3 to test SGEBAK.
780 *
781 * The remaining lines consist of specially constructed test cases.
782 *
783 *-----------------------------------------------------------------------
784 *
785 * SGL and SGK input files:
786 *
787 * line 1: 'SGL' in columns 1-3 to test SGGBAL, or 'SGK' in
788 * columns 1-3 to test SGGBAK.
789 *
790 * The remaining lines consist of specially constructed test cases.
791 *
792 *-----------------------------------------------------------------------
793 *
794 * GLM data file:
795 *
796 * line 1: 'GLM' in columns 1 to 3.
797 *
798 * line 2: NN, INTEGER
799 * Number of values of M, P, and N.
800 *
801 * line 3: MVAL, INTEGER array, dimension(NN)
802 * Values of M (row dimension).
803 *
804 * line 4: PVAL, INTEGER array, dimension(NN)
805 * Values of P (row dimension).
806 *
807 * line 5: NVAL, INTEGER array, dimension(NN)
808 * Values of N (column dimension), note M <= N <= M+P.
809 *
810 * line 6: THRESH, REAL
811 * Threshold value for the test ratios. Information will be
812 * printed about each test for which the test ratio is greater
813 * than or equal to the threshold.
814 *
815 * line 7: TSTERR, LOGICAL
816 * Flag indicating whether or not to test the error exits for
817 * the LAPACK routines and driver routines.
818 *
819 * line 8: NEWSD, INTEGER
820 * A code indicating how to set the random number seed.
821 * = 0: Set the seed to a default value before each run
822 * = 1: Initialize the seed to a default value only before the
823 * first run
824 * = 2: Like 1, but use the seed values on the next line
825 *
826 * If line 8 was 2:
827 *
828 * line 9: INTEGER array, dimension (4)
829 * Four integer values for the random number seed.
830 *
831 * lines 9-EOF: Lines specifying matrix types, as for NEP.
832 * The 3-character path name is 'GLM' for the generalized
833 * linear regression model routines.
834 *
835 *-----------------------------------------------------------------------
836 *
837 * GQR data file:
838 *
839 * line 1: 'GQR' in columns 1 to 3.
840 *
841 * line 2: NN, INTEGER
842 * Number of values of M, P, and N.
843 *
844 * line 3: MVAL, INTEGER array, dimension(NN)
845 * Values of M.
846 *
847 * line 4: PVAL, INTEGER array, dimension(NN)
848 * Values of P.
849 *
850 * line 5: NVAL, INTEGER array, dimension(NN)
851 * Values of N.
852 *
853 * line 6: THRESH, REAL
854 * Threshold value for the test ratios. Information will be
855 * printed about each test for which the test ratio is greater
856 * than or equal to the threshold.
857 *
858 * line 7: TSTERR, LOGICAL
859 * Flag indicating whether or not to test the error exits for
860 * the LAPACK routines and driver routines.
861 *
862 * line 8: NEWSD, INTEGER
863 * A code indicating how to set the random number seed.
864 * = 0: Set the seed to a default value before each run
865 * = 1: Initialize the seed to a default value only before the
866 * first run
867 * = 2: Like 1, but use the seed values on the next line
868 *
869 * If line 8 was 2:
870 *
871 * line 9: INTEGER array, dimension (4)
872 * Four integer values for the random number seed.
873 *
874 * lines 9-EOF: Lines specifying matrix types, as for NEP.
875 * The 3-character path name is 'GQR' for the generalized
876 * QR and RQ routines.
877 *
878 *-----------------------------------------------------------------------
879 *
880 * GSV data file:
881 *
882 * line 1: 'GSV' in columns 1 to 3.
883 *
884 * line 2: NN, INTEGER
885 * Number of values of M, P, and N.
886 *
887 * line 3: MVAL, INTEGER array, dimension(NN)
888 * Values of M (row dimension).
889 *
890 * line 4: PVAL, INTEGER array, dimension(NN)
891 * Values of P (row dimension).
892 *
893 * line 5: NVAL, INTEGER array, dimension(NN)
894 * Values of N (column dimension).
895 *
896 * line 6: THRESH, REAL
897 * Threshold value for the test ratios. Information will be
898 * printed about each test for which the test ratio is greater
899 * than or equal to the threshold.
900 *
901 * line 7: TSTERR, LOGICAL
902 * Flag indicating whether or not to test the error exits for
903 * the LAPACK routines and driver routines.
904 *
905 * line 8: NEWSD, INTEGER
906 * A code indicating how to set the random number seed.
907 * = 0: Set the seed to a default value before each run
908 * = 1: Initialize the seed to a default value only before the
909 * first run
910 * = 2: Like 1, but use the seed values on the next line
911 *
912 * If line 8 was 2:
913 *
914 * line 9: INTEGER array, dimension (4)
915 * Four integer values for the random number seed.
916 *
917 * lines 9-EOF: Lines specifying matrix types, as for NEP.
918 * The 3-character path name is 'GSV' for the generalized
919 * SVD routines.
920 *
921 *-----------------------------------------------------------------------
922 *
923 * CSD data file:
924 *
925 * line 1: 'CSD' in columns 1 to 3.
926 *
927 * line 2: NM, INTEGER
928 * Number of values of M, P, and N.
929 *
930 * line 3: MVAL, INTEGER array, dimension(NM)
931 * Values of M (row and column dimension of orthogonal matrix).
932 *
933 * line 4: PVAL, INTEGER array, dimension(NM)
934 * Values of P (row dimension of top-left block).
935 *
936 * line 5: NVAL, INTEGER array, dimension(NM)
937 * Values of N (column dimension of top-left block).
938 *
939 * line 6: THRESH, REAL
940 * Threshold value for the test ratios. Information will be
941 * printed about each test for which the test ratio is greater
942 * than or equal to the threshold.
943 *
944 * line 7: TSTERR, LOGICAL
945 * Flag indicating whether or not to test the error exits for
946 * the LAPACK routines and driver routines.
947 *
948 * line 8: NEWSD, INTEGER
949 * A code indicating how to set the random number seed.
950 * = 0: Set the seed to a default value before each run
951 * = 1: Initialize the seed to a default value only before the
952 * first run
953 * = 2: Like 1, but use the seed values on the next line
954 *
955 * If line 8 was 2:
956 *
957 * line 9: INTEGER array, dimension (4)
958 * Four integer values for the random number seed.
959 *
960 * lines 9-EOF: Lines specifying matrix types, as for NEP.
961 * The 3-character path name is 'CSD' for the CSD routine.
962 *
963 *-----------------------------------------------------------------------
964 *
965 * LSE data file:
966 *
967 * line 1: 'LSE' in columns 1 to 3.
968 *
969 * line 2: NN, INTEGER
970 * Number of values of M, P, and N.
971 *
972 * line 3: MVAL, INTEGER array, dimension(NN)
973 * Values of M.
974 *
975 * line 4: PVAL, INTEGER array, dimension(NN)
976 * Values of P.
977 *
978 * line 5: NVAL, INTEGER array, dimension(NN)
979 * Values of N, note P <= N <= P+M.
980 *
981 * line 6: THRESH, REAL
982 * Threshold value for the test ratios. Information will be
983 * printed about each test for which the test ratio is greater
984 * than or equal to the threshold.
985 *
986 * line 7: TSTERR, LOGICAL
987 * Flag indicating whether or not to test the error exits for
988 * the LAPACK routines and driver routines.
989 *
990 * line 8: NEWSD, INTEGER
991 * A code indicating how to set the random number seed.
992 * = 0: Set the seed to a default value before each run
993 * = 1: Initialize the seed to a default value only before the
994 * first run
995 * = 2: Like 1, but use the seed values on the next line
996 *
997 * If line 8 was 2:
998 *
999 * line 9: INTEGER array, dimension (4)
1000 * Four integer values for the random number seed.
1001 *
1002 * lines 9-EOF: Lines specifying matrix types, as for NEP.
1003 * The 3-character path name is 'GSV' for the generalized
1004 * SVD routines.
1005 *
1006 *-----------------------------------------------------------------------
1007 *
1008 * NMAX is currently set to 132 and must be at least 12 for some of the
1009 * precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter
1010 * statements below. For SVD, we assume NRHS may be as big as N. The
1011 * parameter NEED is set to 14 to allow for 14 N-by-N matrices for SGG.
1012 *
1013 * =====================================================================
1014 *
1015 * .. Parameters ..
1016 INTEGER NMAX
1017 PARAMETER ( NMAX = 132 )
1018 INTEGER NCMAX
1019 PARAMETER ( NCMAX = 20 )
1020 INTEGER NEED
1021 PARAMETER ( NEED = 14 )
1022 INTEGER LWORK
1023 PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 )
1024 INTEGER LIWORK
1025 PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) )
1026 INTEGER MAXIN
1027 PARAMETER ( MAXIN = 20 )
1028 INTEGER MAXT
1029 PARAMETER ( MAXT = 30 )
1030 INTEGER NIN, NOUT
1031 PARAMETER ( NIN = 5, NOUT = 6 )
1032 * ..
1033 * .. Local Scalars ..
1034 LOGICAL CSD, FATAL, GLM, GQR, GSV, LSE, NEP, SBB, SBK,
1035 $ SBL, SEP, SES, SEV, SGG, SGK, SGL, SGS, SGV,
1036 $ SGX, SSB, SSX, SVD, SVX, SXV, TSTCHK, TSTDIF,
1037 $ TSTDRV, TSTERR
1038 CHARACTER C1
1039 CHARACTER*3 C3, PATH
1040 CHARACTER*32 VNAME
1041 CHARACTER*10 INTSTR
1042 CHARACTER*80 LINE
1043 INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
1044 $ NK, NN, NPARMS, NRHS, NTYPES,
1045 $ VERS_MAJOR, VERS_MINOR, VERS_PATCH
1046 REAL EPS, S1, S2, THRESH, THRSHN
1047 * ..
1048 * .. Local Arrays ..
1049 LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
1050 INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
1051 $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
1052 $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
1053 $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
1054 $ PVAL( MAXIN )
1055 INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
1056 $ ISHFTS( MAXIN ), IACC22( MAXIN )
1057 REAL A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ),
1058 $ C( NCMAX*NCMAX, NCMAX*NCMAX ), D( NMAX, 12 ),
1059 $ RESULT( 500 ), TAUA( NMAX ), TAUB( NMAX ),
1060 $ WORK( LWORK ), X( 5*NMAX )
1061 * ..
1062 * .. External Functions ..
1063 LOGICAL LSAMEN
1064 REAL SECOND, SLAMCH
1065 EXTERNAL LSAMEN, SECOND, SLAMCH
1066 * ..
1067 * .. External Subroutines ..
1068 EXTERNAL ALAREQ, SCHKBB, SCHKBD, SCHKBK, SCHKBL, SCHKEC,
1069 $ SCHKGG, SCHKGK, SCHKGL, SCHKHS, SCHKSB, SCHKST,
1070 $ SCKCSD, SCKGLM, SCKGQR, SCKGSV, SCKLSE, SDRGES,
1071 $ SDRGEV, SDRGSX, SDRGVX, SDRVBD, SDRVES, SDRVEV,
1072 $ SDRVGG, SDRVSG, SDRVST, SDRVSX, SDRVVX, SERRBD,
1073 $ SERRED, SERRGG, SERRHS, SERRST, ILAVER, XLAENV
1074 * ..
1075 * .. Intrinsic Functions ..
1076 INTRINSIC LEN, MIN
1077 * ..
1078 * .. Scalars in Common ..
1079 LOGICAL LERR, OK
1080 CHARACTER*32 SRNAMT
1081 INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
1082 $ SELOPT
1083 * ..
1084 * .. Arrays in Common ..
1085 LOGICAL SELVAL( 20 )
1086 INTEGER IPARMS( 100 )
1087 REAL SELWI( 20 ), SELWR( 20 )
1088 * ..
1089 * .. Common blocks ..
1090 COMMON / CENVIR / NPROC, NSHIFT, MAXB
1091 COMMON / CLAENV / IPARMS
1092 COMMON / INFOC / INFOT, NUNIT, OK, LERR
1093 COMMON / SRNAMC / SRNAMT
1094 COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
1095 * ..
1096 * .. Data statements ..
1097 DATA INTSTR / '0123456789' /
1098 DATA IOLDSD / 0, 0, 0, 1 /
1099 * ..
1100 * .. Executable Statements ..
1101 *
1102 S1 = SECOND( )
1103 FATAL = .FALSE.
1104 NUNIT = NOUT
1105 *
1106 * Return to here to read multiple sets of data
1107 *
1108 10 CONTINUE
1109 *
1110 * Read the first line and set the 3-character test path
1111 *
1112 READ( NIN, FMT = '(A80)', END = 380 )LINE
1113 PATH = LINE( 1: 3 )
1114 NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'SHS' )
1115 SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'SST' ) .OR.
1116 $ LSAMEN( 3, PATH, 'SSG' )
1117 SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'SBD' )
1118 SEV = LSAMEN( 3, PATH, 'SEV' )
1119 SES = LSAMEN( 3, PATH, 'SES' )
1120 SVX = LSAMEN( 3, PATH, 'SVX' )
1121 SSX = LSAMEN( 3, PATH, 'SSX' )
1122 SGG = LSAMEN( 3, PATH, 'SGG' )
1123 SGS = LSAMEN( 3, PATH, 'SGS' )
1124 SGX = LSAMEN( 3, PATH, 'SGX' )
1125 SGV = LSAMEN( 3, PATH, 'SGV' )
1126 SXV = LSAMEN( 3, PATH, 'SXV' )
1127 SSB = LSAMEN( 3, PATH, 'SSB' )
1128 SBB = LSAMEN( 3, PATH, 'SBB' )
1129 GLM = LSAMEN( 3, PATH, 'GLM' )
1130 GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
1131 GSV = LSAMEN( 3, PATH, 'GSV' )
1132 CSD = LSAMEN( 3, PATH, 'CSD' )
1133 LSE = LSAMEN( 3, PATH, 'LSE' )
1134 SBL = LSAMEN( 3, PATH, 'SBL' )
1135 SBK = LSAMEN( 3, PATH, 'SBK' )
1136 SGL = LSAMEN( 3, PATH, 'SGL' )
1137 SGK = LSAMEN( 3, PATH, 'SGK' )
1138 *
1139 * Report values of parameters.
1140 *
1141 IF( PATH.EQ.' ' ) THEN
1142 GO TO 10
1143 ELSE IF( NEP ) THEN
1144 WRITE( NOUT, FMT = 9987 )
1145 ELSE IF( SEP ) THEN
1146 WRITE( NOUT, FMT = 9986 )
1147 ELSE IF( SVD ) THEN
1148 WRITE( NOUT, FMT = 9985 )
1149 ELSE IF( SEV ) THEN
1150 WRITE( NOUT, FMT = 9979 )
1151 ELSE IF( SES ) THEN
1152 WRITE( NOUT, FMT = 9978 )
1153 ELSE IF( SVX ) THEN
1154 WRITE( NOUT, FMT = 9977 )
1155 ELSE IF( SSX ) THEN
1156 WRITE( NOUT, FMT = 9976 )
1157 ELSE IF( SGG ) THEN
1158 WRITE( NOUT, FMT = 9975 )
1159 ELSE IF( SGS ) THEN
1160 WRITE( NOUT, FMT = 9964 )
1161 ELSE IF( SGX ) THEN
1162 WRITE( NOUT, FMT = 9965 )
1163 ELSE IF( SGV ) THEN
1164 WRITE( NOUT, FMT = 9963 )
1165 ELSE IF( SXV ) THEN
1166 WRITE( NOUT, FMT = 9962 )
1167 ELSE IF( SSB ) THEN
1168 WRITE( NOUT, FMT = 9974 )
1169 ELSE IF( SBB ) THEN
1170 WRITE( NOUT, FMT = 9967 )
1171 ELSE IF( GLM ) THEN
1172 WRITE( NOUT, FMT = 9971 )
1173 ELSE IF( GQR ) THEN
1174 WRITE( NOUT, FMT = 9970 )
1175 ELSE IF( GSV ) THEN
1176 WRITE( NOUT, FMT = 9969 )
1177 ELSE IF( CSD ) THEN
1178 WRITE( NOUT, FMT = 9960 )
1179 ELSE IF( LSE ) THEN
1180 WRITE( NOUT, FMT = 9968 )
1181 ELSE IF( SBL ) THEN
1182 *
1183 * SGEBAL: Balancing
1184 *
1185 CALL SCHKBL( NIN, NOUT )
1186 GO TO 10
1187 ELSE IF( SBK ) THEN
1188 *
1189 * SGEBAK: Back transformation
1190 *
1191 CALL SCHKBK( NIN, NOUT )
1192 GO TO 10
1193 ELSE IF( SGL ) THEN
1194 *
1195 * SGGBAL: Balancing
1196 *
1197 CALL SCHKGL( NIN, NOUT )
1198 GO TO 10
1199 ELSE IF( SGK ) THEN
1200 *
1201 * SGGBAK: Back transformation
1202 *
1203 CALL SCHKGK( NIN, NOUT )
1204 GO TO 10
1205 ELSE IF( LSAMEN( 3, PATH, 'SEC' ) ) THEN
1206 *
1207 * SEC: Eigencondition estimation
1208 *
1209 READ( NIN, FMT = * )THRESH
1210 CALL XLAENV( 1, 1 )
1211 CALL XLAENV( 12, 11 )
1212 CALL XLAENV( 13, 2 )
1213 CALL XLAENV( 14, 0 )
1214 CALL XLAENV( 15, 2 )
1215 CALL XLAENV( 16, 2 )
1216 TSTERR = .TRUE.
1217 CALL SCHKEC( THRESH, TSTERR, NIN, NOUT )
1218 GO TO 10
1219 ELSE
1220 WRITE( NOUT, FMT = 9992 )PATH
1221 GO TO 10
1222 END IF
1223 CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
1224 WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
1225 WRITE( NOUT, FMT = 9984 )
1226 *
1227 * Read the number of values of M, P, and N.
1228 *
1229 READ( NIN, FMT = * )NN
1230 IF( NN.LT.0 ) THEN
1231 WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
1232 NN = 0
1233 FATAL = .TRUE.
1234 ELSE IF( NN.GT.MAXIN ) THEN
1235 WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
1236 NN = 0
1237 FATAL = .TRUE.
1238 END IF
1239 *
1240 * Read the values of M
1241 *
1242 IF( .NOT.( SGX .OR. SXV ) ) THEN
1243 READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
1244 IF( SVD ) THEN
1245 VNAME = ' M '
1246 ELSE
1247 VNAME = ' N '
1248 END IF
1249 DO 20 I = 1, NN
1250 IF( MVAL( I ).LT.0 ) THEN
1251 WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
1252 FATAL = .TRUE.
1253 ELSE IF( MVAL( I ).GT.NMAX ) THEN
1254 WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
1255 FATAL = .TRUE.
1256 END IF
1257 20 CONTINUE
1258 WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
1259 END IF
1260 *
1261 * Read the values of P
1262 *
1263 IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
1264 READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
1265 DO 30 I = 1, NN
1266 IF( PVAL( I ).LT.0 ) THEN
1267 WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
1268 FATAL = .TRUE.
1269 ELSE IF( PVAL( I ).GT.NMAX ) THEN
1270 WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
1271 FATAL = .TRUE.
1272 END IF
1273 30 CONTINUE
1274 WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
1275 END IF
1276 *
1277 * Read the values of N
1278 *
1279 IF( SVD .OR. SBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
1280 $ LSE ) THEN
1281 READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
1282 DO 40 I = 1, NN
1283 IF( NVAL( I ).LT.0 ) THEN
1284 WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
1285 FATAL = .TRUE.
1286 ELSE IF( NVAL( I ).GT.NMAX ) THEN
1287 WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
1288 FATAL = .TRUE.
1289 END IF
1290 40 CONTINUE
1291 ELSE
1292 DO 50 I = 1, NN
1293 NVAL( I ) = MVAL( I )
1294 50 CONTINUE
1295 END IF
1296 IF( .NOT.( SGX .OR. SXV ) ) THEN
1297 WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
1298 ELSE
1299 WRITE( NOUT, FMT = 9983 )'N: ', NN
1300 END IF
1301 *
1302 * Read the number of values of K, followed by the values of K
1303 *
1304 IF( SSB .OR. SBB ) THEN
1305 READ( NIN, FMT = * )NK
1306 READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
1307 DO 60 I = 1, NK
1308 IF( KVAL( I ).LT.0 ) THEN
1309 WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
1310 FATAL = .TRUE.
1311 ELSE IF( KVAL( I ).GT.NMAX ) THEN
1312 WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
1313 FATAL = .TRUE.
1314 END IF
1315 60 CONTINUE
1316 WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
1317 END IF
1318 *
1319 IF( SEV .OR. SES .OR. SVX .OR. SSX ) THEN
1320 *
1321 * For the nonsymmetric QR driver routines, only one set of
1322 * parameters is allowed.
1323 *
1324 READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
1325 $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
1326 IF( NBVAL( 1 ).LT.1 ) THEN
1327 WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
1328 FATAL = .TRUE.
1329 ELSE IF( NBMIN( 1 ).LT.1 ) THEN
1330 WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
1331 FATAL = .TRUE.
1332 ELSE IF( NXVAL( 1 ).LT.1 ) THEN
1333 WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
1334 FATAL = .TRUE.
1335 ELSE IF( INMIN( 1 ).LT.1 ) THEN
1336 WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
1337 FATAL = .TRUE.
1338 ELSE IF( INWIN( 1 ).LT.1 ) THEN
1339 WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
1340 FATAL = .TRUE.
1341 ELSE IF( INIBL( 1 ).LT.1 ) THEN
1342 WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
1343 FATAL = .TRUE.
1344 ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
1345 WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
1346 FATAL = .TRUE.
1347 ELSE IF( IACC22( 1 ).LT.0 ) THEN
1348 WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
1349 FATAL = .TRUE.
1350 END IF
1351 CALL XLAENV( 1, NBVAL( 1 ) )
1352 CALL XLAENV( 2, NBMIN( 1 ) )
1353 CALL XLAENV( 3, NXVAL( 1 ) )
1354 CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
1355 CALL XLAENV(13, INWIN( 1 ) )
1356 CALL XLAENV(14, INIBL( 1 ) )
1357 CALL XLAENV(15, ISHFTS( 1 ) )
1358 CALL XLAENV(16, IACC22( 1 ) )
1359 WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
1360 WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
1361 WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
1362 WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
1363 WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
1364 WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
1365 WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
1366 WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
1367 *
1368 ELSE IF( SGS .OR. SGX .OR. SGV .OR. SXV ) THEN
1369 *
1370 * For the nonsymmetric generalized driver routines, only one set
1371 * of parameters is allowed.
1372 *
1373 READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
1374 $ NSVAL( 1 ), MXBVAL( 1 )
1375 IF( NBVAL( 1 ).LT.1 ) THEN
1376 WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
1377 FATAL = .TRUE.
1378 ELSE IF( NBMIN( 1 ).LT.1 ) THEN
1379 WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
1380 FATAL = .TRUE.
1381 ELSE IF( NXVAL( 1 ).LT.1 ) THEN
1382 WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
1383 FATAL = .TRUE.
1384 ELSE IF( NSVAL( 1 ).LT.2 ) THEN
1385 WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
1386 FATAL = .TRUE.
1387 ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
1388 WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
1389 FATAL = .TRUE.
1390 END IF
1391 CALL XLAENV( 1, NBVAL( 1 ) )
1392 CALL XLAENV( 2, NBMIN( 1 ) )
1393 CALL XLAENV( 3, NXVAL( 1 ) )
1394 CALL XLAENV( 4, NSVAL( 1 ) )
1395 CALL XLAENV( 8, MXBVAL( 1 ) )
1396 WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
1397 WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
1398 WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
1399 WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
1400 WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
1401 *
1402 ELSE IF( .NOT.SSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
1403 $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
1404 *
1405 * For the other paths, the number of parameters can be varied
1406 * from the input file. Read the number of parameter values.
1407 *
1408 READ( NIN, FMT = * )NPARMS
1409 IF( NPARMS.LT.1 ) THEN
1410 WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
1411 NPARMS = 0
1412 FATAL = .TRUE.
1413 ELSE IF( NPARMS.GT.MAXIN ) THEN
1414 WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
1415 NPARMS = 0
1416 FATAL = .TRUE.
1417 END IF
1418 *
1419 * Read the values of NB
1420 *
1421 IF( .NOT.SBB ) THEN
1422 READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
1423 DO 70 I = 1, NPARMS
1424 IF( NBVAL( I ).LT.0 ) THEN
1425 WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
1426 FATAL = .TRUE.
1427 ELSE IF( NBVAL( I ).GT.NMAX ) THEN
1428 WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
1429 FATAL = .TRUE.
1430 END IF
1431 70 CONTINUE
1432 WRITE( NOUT, FMT = 9983 )'NB: ',
1433 $ ( NBVAL( I ), I = 1, NPARMS )
1434 END IF
1435 *
1436 * Read the values of NBMIN
1437 *
1438 IF( NEP .OR. SEP .OR. SVD .OR. SGG ) THEN
1439 READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
1440 DO 80 I = 1, NPARMS
1441 IF( NBMIN( I ).LT.0 ) THEN
1442 WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
1443 FATAL = .TRUE.
1444 ELSE IF( NBMIN( I ).GT.NMAX ) THEN
1445 WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
1446 FATAL = .TRUE.
1447 END IF
1448 80 CONTINUE
1449 WRITE( NOUT, FMT = 9983 )'NBMIN:',
1450 $ ( NBMIN( I ), I = 1, NPARMS )
1451 ELSE
1452 DO 90 I = 1, NPARMS
1453 NBMIN( I ) = 1
1454 90 CONTINUE
1455 END IF
1456 *
1457 * Read the values of NX
1458 *
1459 IF( NEP .OR. SEP .OR. SVD ) THEN
1460 READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
1461 DO 100 I = 1, NPARMS
1462 IF( NXVAL( I ).LT.0 ) THEN
1463 WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
1464 FATAL = .TRUE.
1465 ELSE IF( NXVAL( I ).GT.NMAX ) THEN
1466 WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
1467 FATAL = .TRUE.
1468 END IF
1469 100 CONTINUE
1470 WRITE( NOUT, FMT = 9983 )'NX: ',
1471 $ ( NXVAL( I ), I = 1, NPARMS )
1472 ELSE
1473 DO 110 I = 1, NPARMS
1474 NXVAL( I ) = 1
1475 110 CONTINUE
1476 END IF
1477 *
1478 * Read the values of NSHIFT (if SGG) or NRHS (if SVD
1479 * or SBB).
1480 *
1481 IF( SVD .OR. SBB .OR. SGG ) THEN
1482 READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
1483 DO 120 I = 1, NPARMS
1484 IF( NSVAL( I ).LT.0 ) THEN
1485 WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
1486 FATAL = .TRUE.
1487 ELSE IF( NSVAL( I ).GT.NMAX ) THEN
1488 WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
1489 FATAL = .TRUE.
1490 END IF
1491 120 CONTINUE
1492 WRITE( NOUT, FMT = 9983 )'NS: ',
1493 $ ( NSVAL( I ), I = 1, NPARMS )
1494 ELSE
1495 DO 130 I = 1, NPARMS
1496 NSVAL( I ) = 1
1497 130 CONTINUE
1498 END IF
1499 *
1500 * Read the values for MAXB.
1501 *
1502 IF( SGG ) THEN
1503 READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
1504 DO 140 I = 1, NPARMS
1505 IF( MXBVAL( I ).LT.0 ) THEN
1506 WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
1507 FATAL = .TRUE.
1508 ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
1509 WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
1510 FATAL = .TRUE.
1511 END IF
1512 140 CONTINUE
1513 WRITE( NOUT, FMT = 9983 )'MAXB: ',
1514 $ ( MXBVAL( I ), I = 1, NPARMS )
1515 ELSE
1516 DO 150 I = 1, NPARMS
1517 MXBVAL( I ) = 1
1518 150 CONTINUE
1519 END IF
1520 *
1521 * Read the values for INMIN.
1522 *
1523 IF( NEP ) THEN
1524 READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
1525 DO 540 I = 1, NPARMS
1526 IF( INMIN( I ).LT.0 ) THEN
1527 WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
1528 FATAL = .TRUE.
1529 END IF
1530 540 CONTINUE
1531 WRITE( NOUT, FMT = 9983 )'INMIN: ',
1532 $ ( INMIN( I ), I = 1, NPARMS )
1533 ELSE
1534 DO 550 I = 1, NPARMS
1535 INMIN( I ) = 1
1536 550 CONTINUE
1537 END IF
1538 *
1539 * Read the values for INWIN.
1540 *
1541 IF( NEP ) THEN
1542 READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
1543 DO 560 I = 1, NPARMS
1544 IF( INWIN( I ).LT.0 ) THEN
1545 WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
1546 FATAL = .TRUE.
1547 END IF
1548 560 CONTINUE
1549 WRITE( NOUT, FMT = 9983 )'INWIN: ',
1550 $ ( INWIN( I ), I = 1, NPARMS )
1551 ELSE
1552 DO 570 I = 1, NPARMS
1553 INWIN( I ) = 1
1554 570 CONTINUE
1555 END IF
1556 *
1557 * Read the values for INIBL.
1558 *
1559 IF( NEP ) THEN
1560 READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
1561 DO 580 I = 1, NPARMS
1562 IF( INIBL( I ).LT.0 ) THEN
1563 WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
1564 FATAL = .TRUE.
1565 END IF
1566 580 CONTINUE
1567 WRITE( NOUT, FMT = 9983 )'INIBL: ',
1568 $ ( INIBL( I ), I = 1, NPARMS )
1569 ELSE
1570 DO 590 I = 1, NPARMS
1571 INIBL( I ) = 1
1572 590 CONTINUE
1573 END IF
1574 *
1575 * Read the values for ISHFTS.
1576 *
1577 IF( NEP ) THEN
1578 READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
1579 DO 600 I = 1, NPARMS
1580 IF( ISHFTS( I ).LT.0 ) THEN
1581 WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
1582 FATAL = .TRUE.
1583 END IF
1584 600 CONTINUE
1585 WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
1586 $ ( ISHFTS( I ), I = 1, NPARMS )
1587 ELSE
1588 DO 610 I = 1, NPARMS
1589 ISHFTS( I ) = 1
1590 610 CONTINUE
1591 END IF
1592 *
1593 * Read the values for IACC22.
1594 *
1595 IF( NEP ) THEN
1596 READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
1597 DO 620 I = 1, NPARMS
1598 IF( IACC22( I ).LT.0 ) THEN
1599 WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
1600 FATAL = .TRUE.
1601 END IF
1602 620 CONTINUE
1603 WRITE( NOUT, FMT = 9983 )'IACC22: ',
1604 $ ( IACC22( I ), I = 1, NPARMS )
1605 ELSE
1606 DO 630 I = 1, NPARMS
1607 IACC22( I ) = 1
1608 630 CONTINUE
1609 END IF
1610 *
1611 * Read the values for NBCOL.
1612 *
1613 IF( SGG ) THEN
1614 READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
1615 DO 160 I = 1, NPARMS
1616 IF( NBCOL( I ).LT.0 ) THEN
1617 WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
1618 FATAL = .TRUE.
1619 ELSE IF( NBCOL( I ).GT.NMAX ) THEN
1620 WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
1621 FATAL = .TRUE.
1622 END IF
1623 160 CONTINUE
1624 WRITE( NOUT, FMT = 9983 )'NBCOL:',
1625 $ ( NBCOL( I ), I = 1, NPARMS )
1626 ELSE
1627 DO 170 I = 1, NPARMS
1628 NBCOL( I ) = 1
1629 170 CONTINUE
1630 END IF
1631 END IF
1632 *
1633 * Calculate and print the machine dependent constants.
1634 *
1635 WRITE( NOUT, FMT = * )
1636 EPS = SLAMCH( 'Underflow threshold' )
1637 WRITE( NOUT, FMT = 9981 )'underflow', EPS
1638 EPS = SLAMCH( 'Overflow threshold' )
1639 WRITE( NOUT, FMT = 9981 )'overflow ', EPS
1640 EPS = SLAMCH( 'Epsilon' )
1641 WRITE( NOUT, FMT = 9981 )'precision', EPS
1642 *
1643 * Read the threshold value for the test ratios.
1644 *
1645 READ( NIN, FMT = * )THRESH
1646 WRITE( NOUT, FMT = 9982 )THRESH
1647 IF( SEP .OR. SVD .OR. SGG ) THEN
1648 *
1649 * Read the flag that indicates whether to test LAPACK routines.
1650 *
1651 READ( NIN, FMT = * )TSTCHK
1652 *
1653 * Read the flag that indicates whether to test driver routines.
1654 *
1655 READ( NIN, FMT = * )TSTDRV
1656 END IF
1657 *
1658 * Read the flag that indicates whether to test the error exits.
1659 *
1660 READ( NIN, FMT = * )TSTERR
1661 *
1662 * Read the code describing how to set the random number seed.
1663 *
1664 READ( NIN, FMT = * )NEWSD
1665 *
1666 * If NEWSD = 2, read another line with 4 integers for the seed.
1667 *
1668 IF( NEWSD.EQ.2 )
1669 $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
1670 *
1671 DO 180 I = 1, 4
1672 ISEED( I ) = IOLDSD( I )
1673 180 CONTINUE
1674 *
1675 IF( FATAL ) THEN
1676 WRITE( NOUT, FMT = 9999 )
1677 STOP
1678 END IF
1679 *
1680 * Read the input lines indicating the test path and its parameters.
1681 * The first three characters indicate the test path, and the number
1682 * of test matrix types must be the first nonblank item in columns
1683 * 4-80.
1684 *
1685 190 CONTINUE
1686 *
1687 IF( .NOT.( SGX .OR. SXV ) ) THEN
1688 *
1689 200 CONTINUE
1690 READ( NIN, FMT = '(A80)', END = 380 )LINE
1691 C3 = LINE( 1: 3 )
1692 LENP = LEN( LINE )
1693 I = 3
1694 ITMP = 0
1695 I1 = 0
1696 210 CONTINUE
1697 I = I + 1
1698 IF( I.GT.LENP ) THEN
1699 IF( I1.GT.0 ) THEN
1700 GO TO 240
1701 ELSE
1702 NTYPES = MAXT
1703 GO TO 240
1704 END IF
1705 END IF
1706 IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
1707 I1 = I
1708 C1 = LINE( I1: I1 )
1709 *
1710 * Check that a valid integer was read
1711 *
1712 DO 220 K = 1, 10
1713 IF( C1.EQ.INTSTR( K: K ) ) THEN
1714 IC = K - 1
1715 GO TO 230
1716 END IF
1717 220 CONTINUE
1718 WRITE( NOUT, FMT = 9991 )I, LINE
1719 GO TO 200
1720 230 CONTINUE
1721 ITMP = 10*ITMP + IC
1722 GO TO 210
1723 ELSE IF( I1.GT.0 ) THEN
1724 GO TO 240
1725 ELSE
1726 GO TO 210
1727 END IF
1728 240 CONTINUE
1729 NTYPES = ITMP
1730 *
1731 * Skip the tests if NTYPES is <= 0.
1732 *
1733 IF( .NOT.( SEV .OR. SES .OR. SVX .OR. SSX .OR. SGV .OR.
1734 $ SGS ) .AND. NTYPES.LE.0 ) THEN
1735 WRITE( NOUT, FMT = 9990 )C3
1736 GO TO 200
1737 END IF
1738 *
1739 ELSE
1740 IF( SXV )
1741 $ C3 = 'SXV'
1742 IF( SGX )
1743 $ C3 = 'SGX'
1744 END IF
1745 *
1746 * Reset the random number seed.
1747 *
1748 IF( NEWSD.EQ.0 ) THEN
1749 DO 250 K = 1, 4
1750 ISEED( K ) = IOLDSD( K )
1751 250 CONTINUE
1752 END IF
1753 *
1754 IF( LSAMEN( 3, C3, 'SHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
1755 *
1756 * -------------------------------------
1757 * NEP: Nonsymmetric Eigenvalue Problem
1758 * -------------------------------------
1759 * Vary the parameters
1760 * NB = block size
1761 * NBMIN = minimum block size
1762 * NX = crossover point
1763 * NS = number of shifts
1764 * MAXB = minimum submatrix size
1765 *
1766 MAXTYP = 21
1767 NTYPES = MIN( MAXTYP, NTYPES )
1768 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1769 CALL XLAENV( 1, 1 )
1770 IF( TSTERR )
1771 $ CALL SERRHS( 'SHSEQR', NOUT )
1772 DO 270 I = 1, NPARMS
1773 CALL XLAENV( 1, NBVAL( I ) )
1774 CALL XLAENV( 2, NBMIN( I ) )
1775 CALL XLAENV( 3, NXVAL( I ) )
1776 CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
1777 CALL XLAENV(13, INWIN( I ) )
1778 CALL XLAENV(14, INIBL( I ) )
1779 CALL XLAENV(15, ISHFTS( I ) )
1780 CALL XLAENV(16, IACC22( I ) )
1781 *
1782 IF( NEWSD.EQ.0 ) THEN
1783 DO 260 K = 1, 4
1784 ISEED( K ) = IOLDSD( K )
1785 260 CONTINUE
1786 END IF
1787 WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
1788 $ NXVAL( I ), MAX( 11, INMIN(I)),
1789 $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
1790 CALL SCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
1791 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
1792 $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
1793 $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
1794 $ D( 1, 4 ), A( 1, 8 ), A( 1, 9 ), A( 1, 10 ),
1795 $ A( 1, 11 ), A( 1, 12 ), D( 1, 5 ), WORK, LWORK,
1796 $ IWORK, LOGWRK, RESULT, INFO )
1797 IF( INFO.NE.0 )
1798 $ WRITE( NOUT, FMT = 9980 )'SCHKHS', INFO
1799 270 CONTINUE
1800 *
1801 ELSE IF( LSAMEN( 3, C3, 'SST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
1802 *
1803 * ----------------------------------
1804 * SEP: Symmetric Eigenvalue Problem
1805 * ----------------------------------
1806 * Vary the parameters
1807 * NB = block size
1808 * NBMIN = minimum block size
1809 * NX = crossover point
1810 *
1811 MAXTYP = 21
1812 NTYPES = MIN( MAXTYP, NTYPES )
1813 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1814 CALL XLAENV( 1, 1 )
1815 CALL XLAENV( 9, 25 )
1816 IF( TSTERR )
1817 $ CALL SERRST( 'SST', NOUT )
1818 DO 290 I = 1, NPARMS
1819 CALL XLAENV( 1, NBVAL( I ) )
1820 CALL XLAENV( 2, NBMIN( I ) )
1821 CALL XLAENV( 3, NXVAL( I ) )
1822 *
1823 IF( NEWSD.EQ.0 ) THEN
1824 DO 280 K = 1, 4
1825 ISEED( K ) = IOLDSD( K )
1826 280 CONTINUE
1827 END IF
1828 WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
1829 $ NXVAL( I )
1830 IF( TSTCHK ) THEN
1831 CALL SCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
1832 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
1833 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
1834 $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
1835 $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
1836 $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
1837 $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
1838 IF( INFO.NE.0 )
1839 $ WRITE( NOUT, FMT = 9980 )'SCHKST', INFO
1840 END IF
1841 IF( TSTDRV ) THEN
1842 CALL SDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
1843 $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
1844 $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
1845 $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX,
1846 $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
1847 $ LWORK, IWORK, LIWORK, RESULT, INFO )
1848 IF( INFO.NE.0 )
1849 $ WRITE( NOUT, FMT = 9980 )'SDRVST', INFO
1850 END IF
1851 290 CONTINUE
1852 *
1853 ELSE IF( LSAMEN( 3, C3, 'SSG' ) ) THEN
1854 *
1855 * ----------------------------------------------
1856 * SSG: Symmetric Generalized Eigenvalue Problem
1857 * ----------------------------------------------
1858 * Vary the parameters
1859 * NB = block size
1860 * NBMIN = minimum block size
1861 * NX = crossover point
1862 *
1863 MAXTYP = 21
1864 NTYPES = MIN( MAXTYP, NTYPES )
1865 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1866 CALL XLAENV( 9, 25 )
1867 DO 310 I = 1, NPARMS
1868 CALL XLAENV( 1, NBVAL( I ) )
1869 CALL XLAENV( 2, NBMIN( I ) )
1870 CALL XLAENV( 3, NXVAL( I ) )
1871 *
1872 IF( NEWSD.EQ.0 ) THEN
1873 DO 300 K = 1, 4
1874 ISEED( K ) = IOLDSD( K )
1875 300 CONTINUE
1876 END IF
1877 WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
1878 $ NXVAL( I )
1879 IF( TSTCHK ) THEN
1880 CALL SDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
1881 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
1882 $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
1883 $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
1884 $ LWORK, IWORK, LIWORK, RESULT, INFO )
1885 IF( INFO.NE.0 )
1886 $ WRITE( NOUT, FMT = 9980 )'SDRVSG', INFO
1887 END IF
1888 310 CONTINUE
1889 *
1890 ELSE IF( LSAMEN( 3, C3, 'SBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
1891 *
1892 * ----------------------------------
1893 * SVD: Singular Value Decomposition
1894 * ----------------------------------
1895 * Vary the parameters
1896 * NB = block size
1897 * NBMIN = minimum block size
1898 * NX = crossover point
1899 * NRHS = number of right hand sides
1900 *
1901 MAXTYP = 16
1902 NTYPES = MIN( MAXTYP, NTYPES )
1903 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1904 CALL XLAENV( 1, 1 )
1905 CALL XLAENV( 9, 25 )
1906 *
1907 * Test the error exits
1908 *
1909 IF( TSTERR .AND. TSTCHK )
1910 $ CALL SERRBD( 'SBD', NOUT )
1911 IF( TSTERR .AND. TSTDRV )
1912 $ CALL SERRED( 'SBD', NOUT )
1913 *
1914 DO 330 I = 1, NPARMS
1915 NRHS = NSVAL( I )
1916 CALL XLAENV( 1, NBVAL( I ) )
1917 CALL XLAENV( 2, NBMIN( I ) )
1918 CALL XLAENV( 3, NXVAL( I ) )
1919 IF( NEWSD.EQ.0 ) THEN
1920 DO 320 K = 1, 4
1921 ISEED( K ) = IOLDSD( K )
1922 320 CONTINUE
1923 END IF
1924 WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
1925 $ NXVAL( I ), NRHS
1926 IF( TSTCHK ) THEN
1927 CALL SCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
1928 $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ),
1929 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ),
1930 $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX,
1931 $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK,
1932 $ LWORK, IWORK, NOUT, INFO )
1933 IF( INFO.NE.0 )
1934 $ WRITE( NOUT, FMT = 9980 )'SCHKBD', INFO
1935 END IF
1936 IF( TSTDRV )
1937 $ CALL SDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
1938 $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
1939 $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
1940 $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
1941 $ WORK, LWORK, IWORK, NOUT, INFO )
1942 330 CONTINUE
1943 *
1944 ELSE IF( LSAMEN( 3, C3, 'SEV' ) ) THEN
1945 *
1946 * --------------------------------------------
1947 * SEV: Nonsymmetric Eigenvalue Problem Driver
1948 * SGEEV (eigenvalues and eigenvectors)
1949 * --------------------------------------------
1950 *
1951 MAXTYP = 21
1952 NTYPES = MIN( MAXTYP, NTYPES )
1953 IF( NTYPES.LE.0 ) THEN
1954 WRITE( NOUT, FMT = 9990 )C3
1955 ELSE
1956 IF( TSTERR )
1957 $ CALL SERRED( C3, NOUT )
1958 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1959 CALL SDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
1960 $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
1961 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
1962 $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT,
1963 $ WORK, LWORK, IWORK, INFO )
1964 IF( INFO.NE.0 )
1965 $ WRITE( NOUT, FMT = 9980 )'SGEEV', INFO
1966 END IF
1967 WRITE( NOUT, FMT = 9973 )
1968 GO TO 10
1969 *
1970 ELSE IF( LSAMEN( 3, C3, 'SES' ) ) THEN
1971 *
1972 * --------------------------------------------
1973 * SES: Nonsymmetric Eigenvalue Problem Driver
1974 * SGEES (Schur form)
1975 * --------------------------------------------
1976 *
1977 MAXTYP = 21
1978 NTYPES = MIN( MAXTYP, NTYPES )
1979 IF( NTYPES.LE.0 ) THEN
1980 WRITE( NOUT, FMT = 9990 )C3
1981 ELSE
1982 IF( TSTERR )
1983 $ CALL SERRED( C3, NOUT )
1984 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
1985 CALL SDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
1986 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
1987 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
1988 $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK,
1989 $ LOGWRK, INFO )
1990 IF( INFO.NE.0 )
1991 $ WRITE( NOUT, FMT = 9980 )'SGEES', INFO
1992 END IF
1993 WRITE( NOUT, FMT = 9973 )
1994 GO TO 10
1995 *
1996 ELSE IF( LSAMEN( 3, C3, 'SVX' ) ) THEN
1997 *
1998 * --------------------------------------------------------------
1999 * SVX: Nonsymmetric Eigenvalue Problem Expert Driver
2000 * SGEEVX (eigenvalues, eigenvectors and condition numbers)
2001 * --------------------------------------------------------------
2002 *
2003 MAXTYP = 21
2004 NTYPES = MIN( MAXTYP, NTYPES )
2005 IF( NTYPES.LT.0 ) THEN
2006 WRITE( NOUT, FMT = 9990 )C3
2007 ELSE
2008 IF( TSTERR )
2009 $ CALL SERRED( C3, NOUT )
2010 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2011 CALL SDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
2012 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
2013 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
2014 $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX,
2015 $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ),
2016 $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ),
2017 $ RESULT, WORK, LWORK, IWORK, INFO )
2018 IF( INFO.NE.0 )
2019 $ WRITE( NOUT, FMT = 9980 )'SGEEVX', INFO
2020 END IF
2021 WRITE( NOUT, FMT = 9973 )
2022 GO TO 10
2023 *
2024 ELSE IF( LSAMEN( 3, C3, 'SSX' ) ) THEN
2025 *
2026 * ---------------------------------------------------
2027 * SSX: Nonsymmetric Eigenvalue Problem Expert Driver
2028 * SGEESX (Schur form and condition numbers)
2029 * ---------------------------------------------------
2030 *
2031 MAXTYP = 21
2032 NTYPES = MIN( MAXTYP, NTYPES )
2033 IF( NTYPES.LT.0 ) THEN
2034 WRITE( NOUT, FMT = 9990 )C3
2035 ELSE
2036 IF( TSTERR )
2037 $ CALL SERRED( C3, NOUT )
2038 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2039 CALL SDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
2040 $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
2041 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
2042 $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX,
2043 $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK,
2044 $ INFO )
2045 IF( INFO.NE.0 )
2046 $ WRITE( NOUT, FMT = 9980 )'SGEESX', INFO
2047 END IF
2048 WRITE( NOUT, FMT = 9973 )
2049 GO TO 10
2050 *
2051 ELSE IF( LSAMEN( 3, C3, 'SGG' ) ) THEN
2052 *
2053 * -------------------------------------------------
2054 * SGG: Generalized Nonsymmetric Eigenvalue Problem
2055 * -------------------------------------------------
2056 * Vary the parameters
2057 * NB = block size
2058 * NBMIN = minimum block size
2059 * NS = number of shifts
2060 * MAXB = minimum submatrix size
2061 * NBCOL = minimum column dimension for blocks
2062 *
2063 MAXTYP = 26
2064 NTYPES = MIN( MAXTYP, NTYPES )
2065 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2066 IF( TSTCHK .AND. TSTERR )
2067 $ CALL SERRGG( C3, NOUT )
2068 DO 350 I = 1, NPARMS
2069 CALL XLAENV( 1, NBVAL( I ) )
2070 CALL XLAENV( 2, NBMIN( I ) )
2071 CALL XLAENV( 4, NSVAL( I ) )
2072 CALL XLAENV( 8, MXBVAL( I ) )
2073 CALL XLAENV( 5, NBCOL( I ) )
2074 *
2075 IF( NEWSD.EQ.0 ) THEN
2076 DO 340 K = 1, 4
2077 ISEED( K ) = IOLDSD( K )
2078 340 CONTINUE
2079 END IF
2080 WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
2081 $ NSVAL( I ), MXBVAL( I ), NBCOL( I )
2082 TSTDIF = .FALSE.
2083 THRSHN = 10.
2084 IF( TSTCHK ) THEN
2085 CALL SCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
2086 $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
2087 $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
2088 $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
2089 $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
2090 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
2091 $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ),
2092 $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT,
2093 $ INFO )
2094 IF( INFO.NE.0 )
2095 $ WRITE( NOUT, FMT = 9980 )'SCHKGG', INFO
2096 END IF
2097 CALL XLAENV( 1, 1 )
2098 IF( TSTDRV ) THEN
2099 CALL SDRVGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
2100 $ THRSHN, NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
2101 $ A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
2102 $ A( 1, 7 ), NMAX, A( 1, 8 ), D( 1, 1 ),
2103 $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
2104 $ D( 1, 6 ), A( 1, 13 ), A( 1, 14 ), WORK,
2105 $ LWORK, RESULT, INFO )
2106 IF( INFO.NE.0 )
2107 $ WRITE( NOUT, FMT = 9980 )'SDRVGG', INFO
2108 END IF
2109 350 CONTINUE
2110 *
2111 ELSE IF( LSAMEN( 3, C3, 'SGS' ) ) THEN
2112 *
2113 * -------------------------------------------------
2114 * SGS: Generalized Nonsymmetric Eigenvalue Problem
2115 * SGGES (Schur form)
2116 * -------------------------------------------------
2117 *
2118 MAXTYP = 26
2119 NTYPES = MIN( MAXTYP, NTYPES )
2120 IF( NTYPES.LE.0 ) THEN
2121 WRITE( NOUT, FMT = 9990 )C3
2122 ELSE
2123 IF( TSTERR )
2124 $ CALL SERRGG( C3, NOUT )
2125 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2126 CALL SDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
2127 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
2128 $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
2129 $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
2130 $ RESULT, LOGWRK, INFO )
2131 *
2132 IF( INFO.NE.0 )
2133 $ WRITE( NOUT, FMT = 9980 )'SDRGES', INFO
2134 END IF
2135 WRITE( NOUT, FMT = 9973 )
2136 GO TO 10
2137 *
2138 ELSE IF( SGX ) THEN
2139 *
2140 * -------------------------------------------------
2141 * SGX: Generalized Nonsymmetric Eigenvalue Problem
2142 * SGGESX (Schur form and condition numbers)
2143 * -------------------------------------------------
2144 *
2145 MAXTYP = 5
2146 NTYPES = MAXTYP
2147 IF( NN.LT.0 ) THEN
2148 WRITE( NOUT, FMT = 9990 )C3
2149 ELSE
2150 IF( TSTERR )
2151 $ CALL SERRGG( C3, NOUT )
2152 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2153 CALL XLAENV( 5, 2 )
2154 CALL SDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
2155 $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
2156 $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
2157 $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK,
2158 $ LWORK, IWORK, LIWORK, LOGWRK, INFO )
2159 IF( INFO.NE.0 )
2160 $ WRITE( NOUT, FMT = 9980 )'SDRGSX', INFO
2161 END IF
2162 WRITE( NOUT, FMT = 9973 )
2163 GO TO 10
2164 *
2165 ELSE IF( LSAMEN( 3, C3, 'SGV' ) ) THEN
2166 *
2167 * -------------------------------------------------
2168 * SGV: Generalized Nonsymmetric Eigenvalue Problem
2169 * SGGEV (Eigenvalue/vector form)
2170 * -------------------------------------------------
2171 *
2172 MAXTYP = 26
2173 NTYPES = MIN( MAXTYP, NTYPES )
2174 IF( NTYPES.LE.0 ) THEN
2175 WRITE( NOUT, FMT = 9990 )C3
2176 ELSE
2177 IF( TSTERR )
2178 $ CALL SERRGG( C3, NOUT )
2179 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2180 CALL SDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
2181 $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
2182 $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
2183 $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
2184 $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
2185 $ WORK, LWORK, RESULT, INFO )
2186 IF( INFO.NE.0 )
2187 $ WRITE( NOUT, FMT = 9980 )'SDRGEV', INFO
2188 END IF
2189 WRITE( NOUT, FMT = 9973 )
2190 GO TO 10
2191 *
2192 ELSE IF( SXV ) THEN
2193 *
2194 * -------------------------------------------------
2195 * SXV: Generalized Nonsymmetric Eigenvalue Problem
2196 * SGGEVX (eigenvalue/vector with condition numbers)
2197 * -------------------------------------------------
2198 *
2199 MAXTYP = 2
2200 NTYPES = MAXTYP
2201 IF( NN.LT.0 ) THEN
2202 WRITE( NOUT, FMT = 9990 )C3
2203 ELSE
2204 IF( TSTERR )
2205 $ CALL SERRGG( C3, NOUT )
2206 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2207 CALL SDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
2208 $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ),
2209 $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ),
2210 $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ),
2211 $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
2212 $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT,
2213 $ LOGWRK, INFO )
2214 *
2215 IF( INFO.NE.0 )
2216 $ WRITE( NOUT, FMT = 9980 )'SDRGVX', INFO
2217 END IF
2218 WRITE( NOUT, FMT = 9973 )
2219 GO TO 10
2220 *
2221 ELSE IF( LSAMEN( 3, C3, 'SSB' ) ) THEN
2222 *
2223 * ------------------------------
2224 * SSB: Symmetric Band Reduction
2225 * ------------------------------
2226 *
2227 MAXTYP = 15
2228 NTYPES = MIN( MAXTYP, NTYPES )
2229 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2230 IF( TSTERR )
2231 $ CALL SERRST( 'SSB', NOUT )
2232 CALL SCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
2233 $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
2234 $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
2235 IF( INFO.NE.0 )
2236 $ WRITE( NOUT, FMT = 9980 )'SCHKSB', INFO
2237 *
2238 ELSE IF( LSAMEN( 3, C3, 'SBB' ) ) THEN
2239 *
2240 * ------------------------------
2241 * SBB: General Band Reduction
2242 * ------------------------------
2243 *
2244 MAXTYP = 15
2245 NTYPES = MIN( MAXTYP, NTYPES )
2246 CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
2247 DO 370 I = 1, NPARMS
2248 NRHS = NSVAL( I )
2249 *
2250 IF( NEWSD.EQ.0 ) THEN
2251 DO 360 K = 1, 4
2252 ISEED( K ) = IOLDSD( K )
2253 360 CONTINUE
2254 END IF
2255 WRITE( NOUT, FMT = 9966 )C3, NRHS
2256 CALL SCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
2257 $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
2258 $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ),
2259 $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
2260 $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO )
2261 IF( INFO.NE.0 )
2262 $ WRITE( NOUT, FMT = 9980 )'SCHKBB', INFO
2263 370 CONTINUE
2264 *
2265 ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
2266 *
2267 * -----------------------------------------
2268 * GLM: Generalized Linear Regression Model
2269 * -----------------------------------------
2270 *
2271 CALL XLAENV( 1, 1 )
2272 IF( TSTERR )
2273 $ CALL SERRGG( 'GLM', NOUT )
2274 CALL SCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2275 $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
2276 $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
2277 IF( INFO.NE.0 )
2278 $ WRITE( NOUT, FMT = 9980 )'SCKGLM', INFO
2279 *
2280 ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
2281 *
2282 * ------------------------------------------
2283 * GQR: Generalized QR and RQ factorizations
2284 * ------------------------------------------
2285 *
2286 CALL XLAENV( 1, 1 )
2287 IF( TSTERR )
2288 $ CALL SERRGG( 'GQR', NOUT )
2289 CALL SCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
2290 $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
2291 $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
2292 $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN,
2293 $ NOUT, INFO )
2294 IF( INFO.NE.0 )
2295 $ WRITE( NOUT, FMT = 9980 )'SCKGQR', INFO
2296 *
2297 ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
2298 *
2299 * ----------------------------------------------
2300 * GSV: Generalized Singular Value Decomposition
2301 * ----------------------------------------------
2302 *
2303 IF( TSTERR )
2304 $ CALL SERRGG( 'GSV', NOUT )
2305 CALL SCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2306 $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
2307 $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB,
2308 $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT,
2309 $ INFO )
2310 IF( INFO.NE.0 )
2311 $ WRITE( NOUT, FMT = 9980 )'SCKGSV', INFO
2312 *
2313 ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
2314 *
2315 * ----------------------------------------------
2316 * CSD: CS Decomposition
2317 * ----------------------------------------------
2318 *
2319 IF( TSTERR )
2320 $ CALL SERRGG( 'CSD', NOUT )
2321 CALL SCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2322 $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
2323 $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK,
2324 $ D( 1, 1 ), NIN, NOUT, INFO )
2325 IF( INFO.NE.0 )
2326 $ WRITE( NOUT, FMT = 9980 )'SCKCSD', INFO
2327 *
2328 ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
2329 *
2330 * --------------------------------------
2331 * LSE: Constrained Linear Least Squares
2332 * --------------------------------------
2333 *
2334 CALL XLAENV( 1, 1 )
2335 IF( TSTERR )
2336 $ CALL SERRGG( 'LSE', NOUT )
2337 CALL SCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
2338 $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
2339 $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
2340 IF( INFO.NE.0 )
2341 $ WRITE( NOUT, FMT = 9980 )'SCKLSE', INFO
2342 *
2343 ELSE
2344 WRITE( NOUT, FMT = * )
2345 WRITE( NOUT, FMT = * )
2346 WRITE( NOUT, FMT = 9992 )C3
2347 END IF
2348 IF( .NOT.( SGX .OR. SXV ) )
2349 $ GO TO 190
2350 380 CONTINUE
2351 WRITE( NOUT, FMT = 9994 )
2352 S2 = SECOND( )
2353 WRITE( NOUT, FMT = 9993 )S2 - S1
2354 *
2355 9999 FORMAT( / ' Execution not attempted due to input errors' )
2356 9998 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
2357 $ ', NS =', I4, ', MAXB =', I4 )
2358 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
2359 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
2360 $ ', MAXB =', I4, ', NBCOL =', I4 )
2361 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
2362 $ ', NRHS =', I4 )
2363 9994 FORMAT( / / ' End of tests' )
2364 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
2365 9992 FORMAT( 1X, A3, ': Unrecognized path name' )
2366 9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
2367 $ ' of input', ' line:', / A79 )
2368 9990 FORMAT( / / 1X, A3, ' routines were not tested' )
2369 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
2370 $ I6 )
2371 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
2372 $ I6 )
2373 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
2374 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' )
2375 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
2376 9984 FORMAT( / ' The following parameter values will be used:' )
2377 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
2378 9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
2379 $ 'less than', F8.2, / )
2380 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 )
2381 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
2382 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
2383 $ / ' SGEEV (eigenvalues and eigevectors)' )
2384 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
2385 $ / ' SGEES (Schur form)' )
2386 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
2387 $ ' Driver', / ' SGEEVX (eigenvalues, eigenvectors and',
2388 $ ' condition numbers)' )
2389 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
2390 $ ' Driver', / ' SGEESX (Schur form and condition',
2391 $ ' numbers)' )
2392 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2393 $ 'Problem routines' )
2394 9974 FORMAT( ' Tests of SSBTRD', / ' (reduction of a symmetric band ',
2395 $ 'matrix to tridiagonal form)' )
2396 9973 FORMAT( / 1X, 71( '-' ) )
2397 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
2398 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
2399 $ 'routines' )
2400 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
2401 9969 FORMAT( / ' Tests of the Generalized Singular Value',
2402 $ ' Decomposition routines' )
2403 9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
2404 9967 FORMAT( ' Tests of SGBBRD', / ' (reduction of a general band ',
2405 $ 'matrix to real bidiagonal form)' )
2406 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
2407 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2408 $ 'Problem Expert Driver SGGESX' )
2409 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2410 $ 'Problem Driver SGGES' )
2411 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2412 $ 'Problem Driver SGGEV' )
2413 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
2414 $ 'Problem Expert Driver SGGEVX' )
2415 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
2416 $ ', INMIN=', I4,
2417 $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
2418 $ ', IACC22 =', I4)
2419 9960 FORMAT( / ' Tests of the CS Decomposition routines' )
2420 *
2421 * End of SCHKEE
2422 *
2423 END