1       SUBROUTINE SCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
   2      $                   TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
   3      $                   S2, P1, P2, U, LDU, V, Q, Z, ALPHR1, ALPHI1,
   4      $                   BETA1, ALPHR3, ALPHI3, BETA3, EVECTL, EVECTR,
   5      $                   WORK, LWORK, LLWORK, RESULT, INFO )
   6 *
   7 *  -- LAPACK test routine (version 3.1) --
   8 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
   9 *     November 2006
  10 *
  11 *     .. Scalar Arguments ..
  12       LOGICAL            TSTDIF
  13       INTEGER            INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
  14       REAL               THRESH, THRSHN
  15 *     ..
  16 *     .. Array Arguments ..
  17       LOGICAL            DOTYPE( * ), LLWORK( * )
  18       INTEGER            ISEED( 4 ), NN( * )
  19       REAL               A( LDA, * ), ALPHI1( * ), ALPHI3( * ),
  20      $                   ALPHR1( * ), ALPHR3( * ), B( LDA, * ),
  21      $                   BETA1( * ), BETA3( * ), EVECTL( LDU, * ),
  22      $                   EVECTR( LDU, * ), H( LDA, * ), P1( LDA, * ),
  23      $                   P2( LDA, * ), Q( LDU, * ), RESULT15 ),
  24      $                   S1( LDA, * ), S2( LDA, * ), T( LDA, * ),
  25      $                   U( LDU, * ), V( LDU, * ), WORK( * ),
  26      $                   Z( LDU, * )
  27 *     ..
  28 *
  29 *  Purpose
  30 *  =======
  31 *
  32 *  SCHKGG  checks the nonsymmetric generalized eigenvalue problem
  33 *  routines.
  34 *                                 T          T        T
  35 *  SGGHRD factors A and B as U H V  and U T V , where   means
  36 *  transpose, H is hessenberg, T is triangular and U and V are
  37 *  orthogonal.
  38 *                                  T          T
  39 *  SHGEQZ factors H and T as  Q S Z  and Q P Z , where P is upper
  40 *  triangular, S is in generalized Schur form (block upper triangular,
  41 *  with 1x1 and 2x2 blocks on the diagonal, the 2x2 blocks
  42 *  corresponding to complex conjugate pairs of generalized
  43 *  eigenvalues), and Q and Z are orthogonal.  It also computes the
  44 *  generalized eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)),
  45 *  where alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus,
  46 *  w(j) = alpha(j)/beta(j) is a root of the generalized eigenvalue
  47 *  problem
  48 *
  49 *      det( A - w(j) B ) = 0
  50 *
  51 *  and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
  52 *  problem
  53 *
  54 *      det( m(j) A - B ) = 0
  55 *
  56 *  STGEVC computes the matrix L of left eigenvectors and the matrix R
  57 *  of right eigenvectors for the matrix pair ( S, P ).  In the
  58 *  description below,  l and r are left and right eigenvectors
  59 *  corresponding to the generalized eigenvalues (alpha,beta).
  60 *
  61 *  When SCHKGG is called, a number of matrix "sizes" ("n's") and a
  62 *  number of matrix "types" are specified.  For each size ("n")
  63 *  and each type of matrix, one matrix will be generated and used
  64 *  to test the nonsymmetric eigenroutines.  For each matrix, 15
  65 *  tests will be performed.  The first twelve "test ratios" should be
  66 *  small -- O(1).  They will be compared with the threshhold THRESH:
  67 *
  68 *                   T
  69 *  (1)   | A - U H V  | / ( |A| n ulp )
  70 *
  71 *                   T
  72 *  (2)   | B - U T V  | / ( |B| n ulp )
  73 *
  74 *                T
  75 *  (3)   | I - UU  | / ( n ulp )
  76 *
  77 *                T
  78 *  (4)   | I - VV  | / ( n ulp )
  79 *
  80 *                   T
  81 *  (5)   | H - Q S Z  | / ( |H| n ulp )
  82 *
  83 *                   T
  84 *  (6)   | T - Q P Z  | / ( |T| n ulp )
  85 *
  86 *                T
  87 *  (7)   | I - QQ  | / ( n ulp )
  88 *
  89 *                T
  90 *  (8)   | I - ZZ  | / ( n ulp )
  91 *
  92 *  (9)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of
  93 *
  94 *     | l**H * (beta S - alpha P) | / ( ulp max( |beta S|, |alpha P| ) )
  95 *
  96 *  (10)  max over all left eigenvalue/-vector pairs (beta/alpha,l') of
  97 *                            T
  98 *    | l'**H * (beta H - alpha T) | / ( ulp max( |beta H|, |alpha T| ) )
  99 *
 100 *        where the eigenvectors l' are the result of passing Q to
 101 *        STGEVC and back transforming (HOWMNY='B').
 102 *
 103 *  (11)  max over all right eigenvalue/-vector pairs (beta/alpha,r) of
 104 *
 105 *        | (beta S - alpha T) r | / ( ulp max( |beta S|, |alpha T| ) )
 106 *
 107 *  (12)  max over all right eigenvalue/-vector pairs (beta/alpha,r') of
 108 *
 109 *        | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )
 110 *
 111 *        where the eigenvectors r' are the result of passing Z to
 112 *        STGEVC and back transforming (HOWMNY='B').
 113 *
 114 *  The last three test ratios will usually be small, but there is no
 115 *  mathematical requirement that they be so.  They are therefore
 116 *  compared with THRESH only if TSTDIF is .TRUE.
 117 *
 118 *  (13)  | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )
 119 *
 120 *  (14)  | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )
 121 *
 122 *  (15)  max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
 123 *             |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp
 124 *
 125 *  In addition, the normalization of L and R are checked, and compared
 126 *  with the threshhold THRSHN.
 127 *
 128 *  Test Matrices
 129 *  ---- --------
 130 *
 131 *  The sizes of the test matrices are specified by an array
 132 *  NN(1:NSIZES); the value of each element NN(j) specifies one size.
 133 *  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
 134 *  DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 135 *  Currently, the list of possible types is:
 136 *
 137 *  (1)  ( 0, 0 )         (a pair of zero matrices)
 138 *
 139 *  (2)  ( I, 0 )         (an identity and a zero matrix)
 140 *
 141 *  (3)  ( 0, I )         (an identity and a zero matrix)
 142 *
 143 *  (4)  ( I, I )         (a pair of identity matrices)
 144 *
 145 *          t   t
 146 *  (5)  ( J , J  )       (a pair of transposed Jordan blocks)
 147 *
 148 *                                      t                ( I   0  )
 149 *  (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
 150 *                                   ( 0   I  )          ( 0   J  )
 151 *                        and I is a k x k identity and J a (k+1)x(k+1)
 152 *                        Jordan block; k=(N-1)/2
 153 *
 154 *  (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal
 155 *                        matrix with those diagonal entries.)
 156 *  (8)  ( I, D )
 157 *
 158 *  (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big
 159 *
 160 *  (10) ( small*D, big*I )
 161 *
 162 *  (11) ( big*I, small*D )
 163 *
 164 *  (12) ( small*I, big*D )
 165 *
 166 *  (13) ( big*D, big*I )
 167 *
 168 *  (14) ( small*D, small*I )
 169 *
 170 *  (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
 171 *                         D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
 172 *            t   t
 173 *  (16) U ( J , J ) V     where U and V are random orthogonal matrices.
 174 *
 175 *  (17) U ( T1, T2 ) V    where T1 and T2 are upper triangular matrices
 176 *                         with random O(1) entries above the diagonal
 177 *                         and diagonal entries diag(T1) =
 178 *                         ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
 179 *                         ( 0, N-3, N-4,..., 1, 0, 0 )
 180 *
 181 *  (18) U ( T1, T2 ) V    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
 182 *                         diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
 183 *                         s = machine precision.
 184 *
 185 *  (19) U ( T1, T2 ) V    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
 186 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
 187 *
 188 *                                                         N-5
 189 *  (20) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
 190 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
 191 *
 192 *  (21) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
 193 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
 194 *                         where r1,..., r(N-4) are random.
 195 *
 196 *  (22) U ( big*T1, small*T2 ) V    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 197 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 198 *
 199 *  (23) U ( small*T1, big*T2 ) V    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 200 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 201 *
 202 *  (24) U ( small*T1, small*T2 ) V  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 203 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 204 *
 205 *  (25) U ( big*T1, big*T2 ) V      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
 206 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
 207 *
 208 *  (26) U ( T1, T2 ) V     where T1 and T2 are random upper-triangular
 209 *                          matrices.
 210 *
 211 *  Arguments
 212 *  =========
 213 *
 214 *  NSIZES  (input) INTEGER
 215 *          The number of sizes of matrices to use.  If it is zero,
 216 *          SCHKGG does nothing.  It must be at least zero.
 217 *
 218 *  NN      (input) INTEGER array, dimension (NSIZES)
 219 *          An array containing the sizes to be used for the matrices.
 220 *          Zero values will be skipped.  The values must be at least
 221 *          zero.
 222 *
 223 *  NTYPES  (input) INTEGER
 224 *          The number of elements in DOTYPE.   If it is zero, SCHKGG
 225 *          does nothing.  It must be at least zero.  If it is MAXTYP+1
 226 *          and NSIZES is 1, then an additional type, MAXTYP+1 is
 227 *          defined, which is to use whatever matrix is in A.  This
 228 *          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 229 *          DOTYPE(MAXTYP+1) is .TRUE. .
 230 *
 231 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
 232 *          If DOTYPE(j) is .TRUE., then for each size in NN a
 233 *          matrix of that size and of type j will be generated.
 234 *          If NTYPES is smaller than the maximum number of types
 235 *          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 236 *          MAXTYP will not be generated.  If NTYPES is larger
 237 *          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 238 *          will be ignored.
 239 *
 240 *  ISEED   (input/output) INTEGER array, dimension (4)
 241 *          On entry ISEED specifies the seed of the random number
 242 *          generator. The array elements should be between 0 and 4095;
 243 *          if not they will be reduced mod 4096.  Also, ISEED(4) must
 244 *          be odd.  The random number generator uses a linear
 245 *          congruential sequence limited to small integers, and so
 246 *          should produce machine independent random numbers. The
 247 *          values of ISEED are changed on exit, and can be used in the
 248 *          next call to SCHKGG to continue the same random number
 249 *          sequence.
 250 *
 251 *  THRESH  (input) REAL
 252 *          A test will count as "failed" if the "error", computed as
 253 *          described above, exceeds THRESH.  Note that the error is
 254 *          scaled to be O(1), so THRESH should be a reasonably small
 255 *          multiple of 1, e.g., 10 or 100.  In particular, it should
 256 *          not depend on the precision (single vs. double) or the size
 257 *          of the matrix.  It must be at least zero.
 258 *
 259 *  TSTDIF  (input) LOGICAL
 260 *          Specifies whether test ratios 13-15 will be computed and
 261 *          compared with THRESH.
 262 *          = .FALSE.: Only test ratios 1-12 will be computed and tested.
 263 *                     Ratios 13-15 will be set to zero.
 264 *          = .TRUE.:  All the test ratios 1-15 will be computed and
 265 *                     tested.
 266 *
 267 *  THRSHN  (input) REAL
 268 *          Threshhold for reporting eigenvector normalization error.
 269 *          If the normalization of any eigenvector differs from 1 by
 270 *          more than THRSHN*ulp, then a special error message will be
 271 *          printed.  (This is handled separately from the other tests,
 272 *          since only a compiler or programming error should cause an
 273 *          error message, at least if THRSHN is at least 5--10.)
 274 *
 275 *  NOUNIT  (input) INTEGER
 276 *          The FORTRAN unit number for printing out error messages
 277 *          (e.g., if a routine returns IINFO not equal to 0.)
 278 *
 279 *  A       (input/workspace) REAL array, dimension
 280 *                            (LDA, max(NN))
 281 *          Used to hold the original A matrix.  Used as input only
 282 *          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
 283 *          DOTYPE(MAXTYP+1)=.TRUE.
 284 *
 285 *  LDA     (input) INTEGER
 286 *          The leading dimension of A, B, H, T, S1, P1, S2, and P2.
 287 *          It must be at least 1 and at least max( NN ).
 288 *
 289 *  B       (input/workspace) REAL array, dimension
 290 *                            (LDA, max(NN))
 291 *          Used to hold the original B matrix.  Used as input only
 292 *          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
 293 *          DOTYPE(MAXTYP+1)=.TRUE.
 294 *
 295 *  H       (workspace) REAL array, dimension (LDA, max(NN))
 296 *          The upper Hessenberg matrix computed from A by SGGHRD.
 297 *
 298 *  T       (workspace) REAL array, dimension (LDA, max(NN))
 299 *          The upper triangular matrix computed from B by SGGHRD.
 300 *
 301 *  S1      (workspace) REAL array, dimension (LDA, max(NN))
 302 *          The Schur (block upper triangular) matrix computed from H by
 303 *          SHGEQZ when Q and Z are also computed.
 304 *
 305 *  S2      (workspace) REAL array, dimension (LDA, max(NN))
 306 *          The Schur (block upper triangular) matrix computed from H by
 307 *          SHGEQZ when Q and Z are not computed.
 308 *
 309 *  P1      (workspace) REAL array, dimension (LDA, max(NN))
 310 *          The upper triangular matrix computed from T by SHGEQZ
 311 *          when Q and Z are also computed.
 312 *
 313 *  P2      (workspace) REAL array, dimension (LDA, max(NN))
 314 *          The upper triangular matrix computed from T by SHGEQZ
 315 *          when Q and Z are not computed.
 316 *
 317 *  U       (workspace) REAL array, dimension (LDU, max(NN))
 318 *          The (left) orthogonal matrix computed by SGGHRD.
 319 *
 320 *  LDU     (input) INTEGER
 321 *          The leading dimension of U, V, Q, Z, EVECTL, and EVECTR.  It
 322 *          must be at least 1 and at least max( NN ).
 323 *
 324 *  V       (workspace) REAL array, dimension (LDU, max(NN))
 325 *          The (right) orthogonal matrix computed by SGGHRD.
 326 *
 327 *  Q       (workspace) REAL array, dimension (LDU, max(NN))
 328 *          The (left) orthogonal matrix computed by SHGEQZ.
 329 *
 330 *  Z       (workspace) REAL array, dimension (LDU, max(NN))
 331 *          The (left) orthogonal matrix computed by SHGEQZ.
 332 *
 333 *  ALPHR1  (workspace) REAL array, dimension (max(NN))
 334 *  ALPHI1  (workspace) REAL array, dimension (max(NN))
 335 *  BETA1   (workspace) REAL array, dimension (max(NN))
 336 *
 337 *          The generalized eigenvalues of (A,B) computed by SHGEQZ
 338 *          when Q, Z, and the full Schur matrices are computed.
 339 *          On exit, ( ALPHR1(k)+ALPHI1(k)*i ) / BETA1(k) is the k-th
 340 *          generalized eigenvalue of the matrices in A and B.
 341 *
 342 *  ALPHR3  (workspace) REAL array, dimension (max(NN))
 343 *  ALPHI3  (workspace) REAL array, dimension (max(NN))
 344 *  BETA3   (workspace) REAL array, dimension (max(NN))
 345 *
 346 *  EVECTL  (workspace) REAL array, dimension (LDU, max(NN))
 347 *          The (block lower triangular) left eigenvector matrix for
 348 *          the matrices in S1 and P1.  (See STGEVC for the format.)
 349 *
 350 *  EVECTR  (workspace) REAL array, dimension (LDU, max(NN))
 351 *          The (block upper triangular) right eigenvector matrix for
 352 *          the matrices in S1 and P1.  (See STGEVC for the format.)
 353 *
 354 *  WORK    (workspace) REAL array, dimension (LWORK)
 355 *
 356 *  LWORK   (input) INTEGER
 357 *          The number of entries in WORK.  This must be at least
 358 *          max( 2 * N**2, 6*N, 1 ), for all N=NN(j).
 359 *
 360 *  LLWORK  (workspace) LOGICAL array, dimension (max(NN))
 361 *
 362 *  RESULT  (output) REAL array, dimension (15)
 363 *          The values computed by the tests described above.
 364 *          The values are currently limited to 1/ulp, to avoid
 365 *          overflow.
 366 *
 367 *  INFO    (output) INTEGER
 368 *          = 0:  successful exit
 369 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 370 *          > 0:  A routine returned an error code.  INFO is the
 371 *                absolute value of the INFO value returned.
 372 *
 373 *  =====================================================================
 374 *
 375 *     .. Parameters ..
 376       REAL               ZERO, ONE
 377       PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
 378       INTEGER            MAXTYP
 379       PARAMETER          ( MAXTYP = 26 )
 380 *     ..
 381 *     .. Local Scalars ..
 382       LOGICAL            BADNN
 383       INTEGER            I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
 384      $                   LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX,
 385      $                   NTEST, NTESTT
 386       REAL               ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2,
 387      $                   ULP, ULPINV
 388 *     ..
 389 *     .. Local Arrays ..
 390       INTEGER            IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
 391      $                   IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
 392      $                   KATYPE( MAXTYP ), KAZERO( MAXTYP ),
 393      $                   KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
 394      $                   KBZERO( MAXTYP ), KCLASS( MAXTYP ),
 395      $                   KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
 396       REAL               DUMMA( 4 ), RMAGN( 03 )
 397 *     ..
 398 *     .. External Functions ..
 399       REAL               SLAMCH, SLANGE, SLARND
 400       EXTERNAL           SLAMCH, SLANGE, SLARND
 401 *     ..
 402 *     .. External Subroutines ..
 403       EXTERNAL           SGEQR2, SGET51, SGET52, SGGHRD, SHGEQZ, SLABAD,
 404      $                   SLACPY, SLARFG, SLASET, SLASUM, SLATM4, SORM2R,
 405      $                   STGEVC, XERBLA
 406 *     ..
 407 *     .. Intrinsic Functions ..
 408       INTRINSIC          ABSMAXMIN, REAL, SIGN
 409 *     ..
 410 *     .. Data statements ..
 411       DATA               KCLASS / 15*110*21*3 /
 412       DATA               KZ1 / 012133 /
 413       DATA               KZ2 / 001211 /
 414       DATA               KADD / 000032 /
 415       DATA               KATYPE / 0101234144114,
 416      $                   442458794*40 /
 417       DATA               KBTYPE / 00112-3141144,
 418      $                   11-42-48*80 /
 419       DATA               KAZERO / 6*1212*22*12*2313,
 420      $                   4*54*31 /
 421       DATA               KBZERO / 6*1122*12*22*1414,
 422      $                   4*64*41 /
 423       DATA               KAMAGN / 8*12323237*1233,
 424      $                   21 /
 425       DATA               KBMAGN / 8*13232237*1323,
 426      $                   21 /
 427       DATA               KTRIAN / 16*010*1 /
 428       DATA               IASIGN / 6*0202*22*03*2023*0,
 429      $                   5*20 /
 430       DATA               IBSIGN / 7*022*02*22*02029*0 /
 431 *     ..
 432 *     .. Executable Statements ..
 433 *
 434 *     Check for errors
 435 *
 436       INFO = 0
 437 *
 438       BADNN = .FALSE.
 439       NMAX = 1
 440       DO 10 J = 1, NSIZES
 441          NMAX = MAX( NMAX, NN( J ) )
 442          IF( NN( J ).LT.0 )
 443      $      BADNN = .TRUE.
 444    10 CONTINUE
 445 *
 446 *     Maximum blocksize and shift -- we assume that blocksize and number
 447 *     of shifts are monotone increasing functions of N.
 448 *
 449       LWKOPT = MAX6*NMAX, 2*NMAX*NMAX, 1 )
 450 *
 451 *     Check for errors
 452 *
 453       IF( NSIZES.LT.0 ) THEN
 454          INFO = -1
 455       ELSE IF( BADNN ) THEN
 456          INFO = -2
 457       ELSE IF( NTYPES.LT.0 ) THEN
 458          INFO = -3
 459       ELSE IF( THRESH.LT.ZERO ) THEN
 460          INFO = -6
 461       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
 462          INFO = -10
 463       ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
 464          INFO = -19
 465       ELSE IF( LWKOPT.GT.LWORK ) THEN
 466          INFO = -30
 467       END IF
 468 *
 469       IF( INFO.NE.0 ) THEN
 470          CALL XERBLA( 'SCHKGG'-INFO )
 471          RETURN
 472       END IF
 473 *
 474 *     Quick return if possible
 475 *
 476       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 477      $   RETURN
 478 *
 479       SAFMIN = SLAMCH( 'Safe minimum' )
 480       ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 481       SAFMIN = SAFMIN / ULP
 482       SAFMAX = ONE / SAFMIN
 483       CALL SLABAD( SAFMIN, SAFMAX )
 484       ULPINV = ONE / ULP
 485 *
 486 *     The values RMAGN(2:3) depend on N, see below.
 487 *
 488       RMAGN( 0 ) = ZERO
 489       RMAGN( 1 ) = ONE
 490 *
 491 *     Loop over sizes, types
 492 *
 493       NTESTT = 0
 494       NERRS = 0
 495       NMATS = 0
 496 *
 497       DO 240 JSIZE = 1, NSIZES
 498          N = NN( JSIZE )
 499          N1 = MAX1, N )
 500          RMAGN( 2 ) = SAFMAX*ULP / REAL( N1 )
 501          RMAGN( 3 ) = SAFMIN*ULPINV*N1
 502 *
 503          IF( NSIZES.NE.1 ) THEN
 504             MTYPES = MIN( MAXTYP, NTYPES )
 505          ELSE
 506             MTYPES = MIN( MAXTYP+1, NTYPES )
 507          END IF
 508 *
 509          DO 230 JTYPE = 1, MTYPES
 510             IF.NOT.DOTYPE( JTYPE ) )
 511      $         GO TO 230
 512             NMATS = NMATS + 1
 513             NTEST = 0
 514 *
 515 *           Save ISEED in case of an error.
 516 *
 517             DO 20 J = 14
 518                IOLDSD( J ) = ISEED( J )
 519    20       CONTINUE
 520 *
 521 *           Initialize RESULT
 522 *
 523             DO 30 J = 115
 524                RESULT( J ) = ZERO
 525    30       CONTINUE
 526 *
 527 *           Compute A and B
 528 *
 529 *           Description of control parameters:
 530 *
 531 *           KCLASS: =1 means w/o rotation, =2 means w/ rotation,
 532 *                   =3 means random.
 533 *           KATYPE: the "type" to be passed to SLATM4 for computing A.
 534 *           KAZERO: the pattern of zeros on the diagonal for A:
 535 *                   =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
 536 *                   =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
 537 *                   =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of
 538 *                   non-zero entries.)
 539 *           KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
 540 *                   =2: large, =3: small.
 541 *           IASIGN: 1 if the diagonal elements of A are to be
 542 *                   multiplied by a random magnitude 1 number, =2 if
 543 *                   randomly chosen diagonal blocks are to be rotated
 544 *                   to form 2x2 blocks.
 545 *           KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
 546 *           KTRIAN: =0: don't fill in the upper triangle, =1: do.
 547 *           KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
 548 *           RMAGN: used to implement KAMAGN and KBMAGN.
 549 *
 550             IF( MTYPES.GT.MAXTYP )
 551      $         GO TO 110
 552             IINFO = 0
 553             IF( KCLASS( JTYPE ).LT.3 ) THEN
 554 *
 555 *              Generate A (w/o rotation)
 556 *
 557                IFABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
 558                   IN = 2*( ( N-1 ) / 2 ) + 1
 559                   IFIN.NE.N )
 560      $               CALL SLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
 561                ELSE
 562                   IN = N
 563                END IF
 564                CALL SLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
 565      $                      KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
 566      $                      RMAGN( KAMAGN( JTYPE ) ), ULP,
 567      $                      RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
 568      $                      ISEED, A, LDA )
 569                IADD = KADD( KAZERO( JTYPE ) )
 570                IF( IADD.GT.0 .AND. IADD.LE.N )
 571      $            A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
 572 *
 573 *              Generate B (w/o rotation)
 574 *
 575                IFABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
 576                   IN = 2*( ( N-1 ) / 2 ) + 1
 577                   IFIN.NE.N )
 578      $               CALL SLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
 579                ELSE
 580                   IN = N
 581                END IF
 582                CALL SLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
 583      $                      KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
 584      $                      RMAGN( KBMAGN( JTYPE ) ), ONE,
 585      $                      RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
 586      $                      ISEED, B, LDA )
 587                IADD = KADD( KBZERO( JTYPE ) )
 588                IF( IADD.NE.0 .AND. IADD.LE.N )
 589      $            B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
 590 *
 591                IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
 592 *
 593 *                 Include rotations
 594 *
 595 *                 Generate U, V as Householder transformations times
 596 *                 a diagonal matrix.
 597 *
 598                   DO 50 JC = 1, N - 1
 599                      DO 40 JR = JC, N
 600                         U( JR, JC ) = SLARND( 3, ISEED )
 601                         V( JR, JC ) = SLARND( 3, ISEED )
 602    40                CONTINUE
 603                      CALL SLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1,
 604      $                            WORK( JC ) )
 605                      WORK( 2*N+JC ) = SIGN( ONE, U( JC, JC ) )
 606                      U( JC, JC ) = ONE
 607                      CALL SLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1,
 608      $                            WORK( N+JC ) )
 609                      WORK( 3*N+JC ) = SIGN( ONE, V( JC, JC ) )
 610                      V( JC, JC ) = ONE
 611    50             CONTINUE
 612                   U( N, N ) = ONE
 613                   WORK( N ) = ZERO
 614                   WORK( 3*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
 615                   V( N, N ) = ONE
 616                   WORK( 2*N ) = ZERO
 617                   WORK( 4*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
 618 *
 619 *                 Apply the diagonal matrices
 620 *
 621                   DO 70 JC = 1, N
 622                      DO 60 JR = 1, N
 623                         A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
 624      $                                A( JR, JC )
 625                         B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
 626      $                                B( JR, JC )
 627    60                CONTINUE
 628    70             CONTINUE
 629                   CALL SORM2R( 'L''N', N, N, N-1, U, LDU, WORK, A,
 630      $                         LDA, WORK( 2*N+1 ), IINFO )
 631                   IF( IINFO.NE.0 )
 632      $               GO TO 100
 633                   CALL SORM2R( 'R''T', N, N, N-1, V, LDU, WORK( N+1 ),
 634      $                         A, LDA, WORK( 2*N+1 ), IINFO )
 635                   IF( IINFO.NE.0 )
 636      $               GO TO 100
 637                   CALL SORM2R( 'L''N', N, N, N-1, U, LDU, WORK, B,
 638      $                         LDA, WORK( 2*N+1 ), IINFO )
 639                   IF( IINFO.NE.0 )
 640      $               GO TO 100
 641                   CALL SORM2R( 'R''T', N, N, N-1, V, LDU, WORK( N+1 ),
 642      $                         B, LDA, WORK( 2*N+1 ), IINFO )
 643                   IF( IINFO.NE.0 )
 644      $               GO TO 100
 645                END IF
 646             ELSE
 647 *
 648 *              Random matrices
 649 *
 650                DO 90 JC = 1, N
 651                   DO 80 JR = 1, N
 652                      A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
 653      $                             SLARND( 2, ISEED )
 654                      B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
 655      $                             SLARND( 2, ISEED )
 656    80             CONTINUE
 657    90          CONTINUE
 658             END IF
 659 *
 660             ANORM = SLANGE( '1', N, N, A, LDA, WORK )
 661             BNORM = SLANGE( '1', N, N, B, LDA, WORK )
 662 *
 663   100       CONTINUE
 664 *
 665             IF( IINFO.NE.0 ) THEN
 666                WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
 667      $            IOLDSD
 668                INFO = ABS( IINFO )
 669                RETURN
 670             END IF
 671 *
 672   110       CONTINUE
 673 *
 674 *           Call SGEQR2, SORM2R, and SGGHRD to compute H, T, U, and V
 675 *
 676             CALL SLACPY( ' ', N, N, A, LDA, H, LDA )
 677             CALL SLACPY( ' ', N, N, B, LDA, T, LDA )
 678             NTEST = 1
 679             RESULT1 ) = ULPINV
 680 *
 681             CALL SGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO )
 682             IF( IINFO.NE.0 ) THEN
 683                WRITE( NOUNIT, FMT = 9999 )'SGEQR2', IINFO, N, JTYPE,
 684      $            IOLDSD
 685                INFO = ABS( IINFO )
 686                GO TO 210
 687             END IF
 688 *
 689             CALL SORM2R( 'L''T', N, N, N, T, LDA, WORK, H, LDA,
 690      $                   WORK( N+1 ), IINFO )
 691             IF( IINFO.NE.0 ) THEN
 692                WRITE( NOUNIT, FMT = 9999 )'SORM2R', IINFO, N, JTYPE,
 693      $            IOLDSD
 694                INFO = ABS( IINFO )
 695                GO TO 210
 696             END IF
 697 *
 698             CALL SLASET( 'Full', N, N, ZERO, ONE, U, LDU )
 699             CALL SORM2R( 'R''N', N, N, N, T, LDA, WORK, U, LDU,
 700      $                   WORK( N+1 ), IINFO )
 701             IF( IINFO.NE.0 ) THEN
 702                WRITE( NOUNIT, FMT = 9999 )'SORM2R', IINFO, N, JTYPE,
 703      $            IOLDSD
 704                INFO = ABS( IINFO )
 705                GO TO 210
 706             END IF
 707 *
 708             CALL SGGHRD( 'V''I', N, 1, N, H, LDA, T, LDA, U, LDU, V,
 709      $                   LDU, IINFO )
 710             IF( IINFO.NE.0 ) THEN
 711                WRITE( NOUNIT, FMT = 9999 )'SGGHRD', IINFO, N, JTYPE,
 712      $            IOLDSD
 713                INFO = ABS( IINFO )
 714                GO TO 210
 715             END IF
 716             NTEST = 4
 717 *
 718 *           Do tests 1--4
 719 *
 720             CALL SGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK,
 721      $                   RESULT1 ) )
 722             CALL SGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK,
 723      $                   RESULT2 ) )
 724             CALL SGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK,
 725      $                   RESULT3 ) )
 726             CALL SGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK,
 727      $                   RESULT4 ) )
 728 *
 729 *           Call SHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests.
 730 *
 731 *           Compute T1 and UZ
 732 *
 733 *           Eigenvalues only
 734 *
 735             CALL SLACPY( ' ', N, N, H, LDA, S2, LDA )
 736             CALL SLACPY( ' ', N, N, T, LDA, P2, LDA )
 737             NTEST = 5
 738             RESULT5 ) = ULPINV
 739 *
 740             CALL SHGEQZ( 'E''N''N', N, 1, N, S2, LDA, P2, LDA,
 741      $                   ALPHR3, ALPHI3, BETA3, Q, LDU, Z, LDU, WORK,
 742      $                   LWORK, IINFO )
 743             IF( IINFO.NE.0 ) THEN
 744                WRITE( NOUNIT, FMT = 9999 )'SHGEQZ(E)', IINFO, N, JTYPE,
 745      $            IOLDSD
 746                INFO = ABS( IINFO )
 747                GO TO 210
 748             END IF
 749 *
 750 *           Eigenvalues and Full Schur Form
 751 *
 752             CALL SLACPY( ' ', N, N, H, LDA, S2, LDA )
 753             CALL SLACPY( ' ', N, N, T, LDA, P2, LDA )
 754 *
 755             CALL SHGEQZ( 'S''N''N', N, 1, N, S2, LDA, P2, LDA,
 756      $                   ALPHR1, ALPHI1, BETA1, Q, LDU, Z, LDU, WORK,
 757      $                   LWORK, IINFO )
 758             IF( IINFO.NE.0 ) THEN
 759                WRITE( NOUNIT, FMT = 9999 )'SHGEQZ(S)', IINFO, N, JTYPE,
 760      $            IOLDSD
 761                INFO = ABS( IINFO )
 762                GO TO 210
 763             END IF
 764 *
 765 *           Eigenvalues, Schur Form, and Schur Vectors
 766 *
 767             CALL SLACPY( ' ', N, N, H, LDA, S1, LDA )
 768             CALL SLACPY( ' ', N, N, T, LDA, P1, LDA )
 769 *
 770             CALL SHGEQZ( 'S''I''I', N, 1, N, S1, LDA, P1, LDA,
 771      $                   ALPHR1, ALPHI1, BETA1, Q, LDU, Z, LDU, WORK,
 772      $                   LWORK, IINFO )
 773             IF( IINFO.NE.0 ) THEN
 774                WRITE( NOUNIT, FMT = 9999 )'SHGEQZ(V)', IINFO, N, JTYPE,
 775      $            IOLDSD
 776                INFO = ABS( IINFO )
 777                GO TO 210
 778             END IF
 779 *
 780             NTEST = 8
 781 *
 782 *           Do Tests 5--8
 783 *
 784             CALL SGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK,
 785      $                   RESULT5 ) )
 786             CALL SGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK,
 787      $                   RESULT6 ) )
 788             CALL SGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK,
 789      $                   RESULT7 ) )
 790             CALL SGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK,
 791      $                   RESULT8 ) )
 792 *
 793 *           Compute the Left and Right Eigenvectors of (S1,P1)
 794 *
 795 *           9: Compute the left eigenvector Matrix without
 796 *              back transforming:
 797 *
 798             NTEST = 9
 799             RESULT9 ) = ULPINV
 800 *
 801 *           To test "SELECT" option, compute half of the eigenvectors
 802 *           in one call, and half in another
 803 *
 804             I1 = N / 2
 805             DO 120 J = 1, I1
 806                LLWORK( J ) = .TRUE.
 807   120       CONTINUE
 808             DO 130 J = I1 + 1, N
 809                LLWORK( J ) = .FALSE.
 810   130       CONTINUE
 811 *
 812             CALL STGEVC( 'L''S', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
 813      $                   LDU, DUMMA, LDU, N, IN, WORK, IINFO )
 814             IF( IINFO.NE.0 ) THEN
 815                WRITE( NOUNIT, FMT = 9999 )'STGEVC(L,S1)', IINFO, N,
 816      $            JTYPE, IOLDSD
 817                INFO = ABS( IINFO )
 818                GO TO 210
 819             END IF
 820 *
 821             I1 = IN
 822             DO 140 J = 1, I1
 823                LLWORK( J ) = .FALSE.
 824   140       CONTINUE
 825             DO 150 J = I1 + 1, N
 826                LLWORK( J ) = .TRUE.
 827   150       CONTINUE
 828 *
 829             CALL STGEVC( 'L''S', LLWORK, N, S1, LDA, P1, LDA,
 830      $                   EVECTL( 1, I1+1 ), LDU, DUMMA, LDU, N, IN,
 831      $                   WORK, IINFO )
 832             IF( IINFO.NE.0 ) THEN
 833                WRITE( NOUNIT, FMT = 9999 )'STGEVC(L,S2)', IINFO, N,
 834      $            JTYPE, IOLDSD
 835                INFO = ABS( IINFO )
 836                GO TO 210
 837             END IF
 838 *
 839             CALL SGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU,
 840      $                   ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
 841             RESULT9 ) = DUMMA( 1 )
 842             IF( DUMMA( 2 ).GT.THRSHN ) THEN
 843                WRITE( NOUNIT, FMT = 9998 )'Left''STGEVC(HOWMNY=S)',
 844      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 845             END IF
 846 *
 847 *           10: Compute the left eigenvector Matrix with
 848 *               back transforming:
 849 *
 850             NTEST = 10
 851             RESULT10 ) = ULPINV
 852             CALL SLACPY( 'F', N, N, Q, LDU, EVECTL, LDU )
 853             CALL STGEVC( 'L''B', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
 854      $                   LDU, DUMMA, LDU, N, IN, WORK, IINFO )
 855             IF( IINFO.NE.0 ) THEN
 856                WRITE( NOUNIT, FMT = 9999 )'STGEVC(L,B)', IINFO, N,
 857      $            JTYPE, IOLDSD
 858                INFO = ABS( IINFO )
 859                GO TO 210
 860             END IF
 861 *
 862             CALL SGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHR1,
 863      $                   ALPHI1, BETA1, WORK, DUMMA( 1 ) )
 864             RESULT10 ) = DUMMA( 1 )
 865             IF( DUMMA( 2 ).GT.THRSHN ) THEN
 866                WRITE( NOUNIT, FMT = 9998 )'Left''STGEVC(HOWMNY=B)',
 867      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 868             END IF
 869 *
 870 *           11: Compute the right eigenvector Matrix without
 871 *               back transforming:
 872 *
 873             NTEST = 11
 874             RESULT11 ) = ULPINV
 875 *
 876 *           To test "SELECT" option, compute half of the eigenvectors
 877 *           in one call, and half in another
 878 *
 879             I1 = N / 2
 880             DO 160 J = 1, I1
 881                LLWORK( J ) = .TRUE.
 882   160       CONTINUE
 883             DO 170 J = I1 + 1, N
 884                LLWORK( J ) = .FALSE.
 885   170       CONTINUE
 886 *
 887             CALL STGEVC( 'R''S', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
 888      $                   LDU, EVECTR, LDU, N, IN, WORK, IINFO )
 889             IF( IINFO.NE.0 ) THEN
 890                WRITE( NOUNIT, FMT = 9999 )'STGEVC(R,S1)', IINFO, N,
 891      $            JTYPE, IOLDSD
 892                INFO = ABS( IINFO )
 893                GO TO 210
 894             END IF
 895 *
 896             I1 = IN
 897             DO 180 J = 1, I1
 898                LLWORK( J ) = .FALSE.
 899   180       CONTINUE
 900             DO 190 J = I1 + 1, N
 901                LLWORK( J ) = .TRUE.
 902   190       CONTINUE
 903 *
 904             CALL STGEVC( 'R''S', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
 905      $                   LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK,
 906      $                   IINFO )
 907             IF( IINFO.NE.0 ) THEN
 908                WRITE( NOUNIT, FMT = 9999 )'STGEVC(R,S2)', IINFO, N,
 909      $            JTYPE, IOLDSD
 910                INFO = ABS( IINFO )
 911                GO TO 210
 912             END IF
 913 *
 914             CALL SGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU,
 915      $                   ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
 916             RESULT11 ) = DUMMA( 1 )
 917             IF( DUMMA( 2 ).GT.THRESH ) THEN
 918                WRITE( NOUNIT, FMT = 9998 )'Right''STGEVC(HOWMNY=S)',
 919      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 920             END IF
 921 *
 922 *           12: Compute the right eigenvector Matrix with
 923 *               back transforming:
 924 *
 925             NTEST = 12
 926             RESULT12 ) = ULPINV
 927             CALL SLACPY( 'F', N, N, Z, LDU, EVECTR, LDU )
 928             CALL STGEVC( 'R''B', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
 929      $                   LDU, EVECTR, LDU, N, IN, WORK, IINFO )
 930             IF( IINFO.NE.0 ) THEN
 931                WRITE( NOUNIT, FMT = 9999 )'STGEVC(R,B)', IINFO, N,
 932      $            JTYPE, IOLDSD
 933                INFO = ABS( IINFO )
 934                GO TO 210
 935             END IF
 936 *
 937             CALL SGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU,
 938      $                   ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
 939             RESULT12 ) = DUMMA( 1 )
 940             IF( DUMMA( 2 ).GT.THRESH ) THEN
 941                WRITE( NOUNIT, FMT = 9998 )'Right''STGEVC(HOWMNY=B)',
 942      $            DUMMA( 2 ), N, JTYPE, IOLDSD
 943             END IF
 944 *
 945 *           Tests 13--15 are done only on request
 946 *
 947             IF( TSTDIF ) THEN
 948 *
 949 *              Do Tests 13--14
 950 *
 951                CALL SGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU,
 952      $                      WORK, RESULT13 ) )
 953                CALL SGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU,
 954      $                      WORK, RESULT14 ) )
 955 *
 956 *              Do Test 15
 957 *
 958                TEMP1 = ZERO
 959                TEMP2 = ZERO
 960                DO 200 J = 1, N
 961                   TEMP1 = MAX( TEMP1, ABS( ALPHR1( J )-ALPHR3( J ) )+
 962      $                    ABS( ALPHI1( J )-ALPHI3( J ) ) )
 963                   TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) )
 964   200          CONTINUE
 965 *
 966                TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) )
 967                TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) )
 968                RESULT15 ) = MAX( TEMP1, TEMP2 )
 969                NTEST = 15
 970             ELSE
 971                RESULT13 ) = ZERO
 972                RESULT14 ) = ZERO
 973                RESULT15 ) = ZERO
 974                NTEST = 12
 975             END IF
 976 *
 977 *           End of Loop -- Check for RESULT(j) > THRESH
 978 *
 979   210       CONTINUE
 980 *
 981             NTESTT = NTESTT + NTEST
 982 *
 983 *           Print out tests which fail.
 984 *
 985             DO 220 JR = 1, NTEST
 986                IFRESULT( JR ).GE.THRESH ) THEN
 987 *
 988 *                 If this is the first test to fail,
 989 *                 print a header to the data file.
 990 *
 991                   IF( NERRS.EQ.0 ) THEN
 992                      WRITE( NOUNIT, FMT = 9997 )'SGG'
 993 *
 994 *                    Matrix types
 995 *
 996                      WRITE( NOUNIT, FMT = 9996 )
 997                      WRITE( NOUNIT, FMT = 9995 )
 998                      WRITE( NOUNIT, FMT = 9994 )'Orthogonal'
 999 *
1000 *                    Tests performed
1001 *
1002                      WRITE( NOUNIT, FMT = 9993 )'orthogonal''''',
1003      $                  'transpose', ( '''', J = 110 )
1004 *
1005                   END IF
1006                   NERRS = NERRS + 1
1007                   IFRESULT( JR ).LT.10000.0 ) THEN
1008                      WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
1009      $                  RESULT( JR )
1010                   ELSE
1011                      WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
1012      $                  RESULT( JR )
1013                   END IF
1014                END IF
1015   220       CONTINUE
1016 *
1017   230    CONTINUE
1018   240 CONTINUE
1019 *
1020 *     Summary
1021 *
1022       CALL SLASUM( 'SGG', NOUNIT, NERRS, NTESTT )
1023       RETURN
1024 *
1025  9999 FORMAT' SCHKGG: ', A, ' returned INFO=', I6, '.'/ 9X'N=',
1026      $      I6, ', JTYPE=', I6, ', ISEED=('3( I5, ',' ), I5, ')' )
1027 *
1028  9998 FORMAT' SCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
1029      $      'normalized.'/ ' Bits of error=', 0P, G10.3','9X,
1030      $      'N=', I6, ', JTYPE=', I6, ', ISEED=('3( I5, ',' ), I5,
1031      $      ')' )
1032 *
1033  9997 FORMAT/ 1X, A3, ' -- Real Generalized eigenvalue problem' )
1034 *
1035  9996 FORMAT' Matrix types (see SCHKGG for details): ' )
1036 *
1037  9995 FORMAT' Special Matrices:'23X,
1038      $      '(J''=transposed Jordan block)',
1039      $      / '   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J'',J'')  ',
1040      $      '6=(diag(J'',I), diag(I,J''))'/ ' Diagonal Matrices:  ( ',
1041      $      'D=diag(0,1,2,...) )'/ '   7=(D,I)   9=(large*D, small*I',
1042      $      ')  11=(large*I, small*D)  13=(large*D, large*I)'/
1043      $      '   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D) ',
1044      $      ' 14=(small*D, small*I)'/ '  15=(D, reversed D)' )
1045  9994 FORMAT' Matrices Rotated by Random ', A, ' Matrices U, V:',
1046      $      / '  16=Transposed Jordan Blocks             19=geometric ',
1047      $      'alpha, beta=0,1'/ '  17=arithm. alpha&beta             ',
1048      $      '      20=arithmetic alpha, beta=0,1'/ '  18=clustered ',
1049      $      'alpha, beta=0,1            21=random alpha, beta=0,1',
1050      $      / ' Large & Small Matrices:'/ '  22=(large, small)   ',
1051      $      '23=(small,large)    24=(small,small)    25=(large,large)',
1052      $      / '  26=random O(1) matrices.' )
1053 *
1054  9993 FORMAT/ ' Tests performed:   (H is Hessenberg, S is Schur, B, ',
1055      $      'T, P are triangular,'/ 20X'U, V, Q, and Z are ', A,
1056      $      ', l and r are the'/ 20X,
1057      $      'appropriate left and right eigenvectors, resp., a is',
1058      $      / 20X'alpha, b is beta, and ', A, ' means ', A, '.)',
1059      $      / ' 1 = | A - U H V', A,
1060      $      ' | / ( |A| n ulp )      2 = | B - U T V', A,
1061      $      ' | / ( |B| n ulp )'/ ' 3 = | I - UU', A,
1062      $      ' | / ( n ulp )             4 = | I - VV', A,
1063      $      ' | / ( n ulp )'/ ' 5 = | H - Q S Z', A,
1064      $      ' | / ( |H| n ulp )'6X'6 = | T - Q P Z', A,
1065      $      ' | / ( |T| n ulp )'/ ' 7 = | I - QQ', A,
1066      $      ' | / ( n ulp )             8 = | I - ZZ', A,
1067      $      ' | / ( n ulp )'/ ' 9 = max | ( b S - a P )', A,
1068      $      ' l | / const.  10 = max | ( b H - a T )', A,
1069      $      ' l | / const.'/
1070      $      ' 11= max | ( b S - a P ) r | / const.   12 = max | ( b H',
1071      $      ' - a T ) r | / const.'/ 1X )
1072 *
1073  9992 FORMAT' Matrix order=', I5, ', type=', I2, ', seed=',
1074      $      4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
1075  9991 FORMAT' Matrix order=', I5, ', type=', I2, ', seed=',
1076      $      4( I4, ',' ), ' result ', I2, ' is', 1P, E10.3 )
1077 *
1078 *     End of SCHKGG
1079 *
1080       END