1       SUBROUTINE SLAHD2( IOUNIT, PATH )
  2 *
  3 *  -- LAPACK auxiliary test routine (version 2.0) --
  4 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  5 *     November 2006
  6 *
  7 *     .. Scalar Arguments ..
  8       CHARACTER*3        PATH
  9       INTEGER            IOUNIT
 10 *     ..
 11 *
 12 *  Purpose
 13 *  =======
 14 *
 15 *  SLAHD2 prints header information for the different test paths.
 16 *
 17 *  Arguments
 18 *  =========
 19 *
 20 *  IOUNIT  (input) INTEGER.
 21 *          On entry, IOUNIT specifies the unit number to which the
 22 *          header information should be printed.
 23 *
 24 *  PATH    (input) CHARACTER*3.
 25 *          On entry, PATH contains the name of the path for which the
 26 *          header information is to be printed.  Current paths are
 27 *
 28 *             SHS, CHS:  Non-symmetric eigenproblem.
 29 *             SST, CST:  Symmetric eigenproblem.
 30 *             SSG, CSG:  Symmetric Generalized eigenproblem.
 31 *             SBD, CBD:  Singular Value Decomposition (SVD)
 32 *             SBB, CBB:  General Banded reduction to bidiagonal form
 33 *
 34 *          These paths also are supplied in double precision (replace
 35 *          leading S by D and leading C by Z in path names).
 36 *
 37 *  =====================================================================
 38 *
 39 *     .. Local Scalars ..
 40       LOGICAL            CORZ, SORD
 41       CHARACTER*2        C2
 42       INTEGER            J
 43 *     ..
 44 *     .. External Functions ..
 45       LOGICAL            LSAME, LSAMEN
 46       EXTERNAL           LSAME, LSAMEN
 47 *     ..
 48 *     .. Executable Statements ..
 49 *
 50       IF( IOUNIT.LE.0 )
 51      $   RETURN
 52       SORD = LSAME( PATH, 'S' ) .OR. LSAME( PATH, 'D' )
 53       CORZ = LSAME( PATH, 'C' ) .OR. LSAME( PATH, 'Z' )
 54       IF.NOT.SORD .AND. .NOT.CORZ ) THEN
 55          WRITE( IOUNIT, FMT = 9999 )PATH
 56       END IF
 57       C2 = PATH( 23 )
 58 *
 59       IF( LSAMEN( 2, C2, 'HS' ) ) THEN
 60          IF( SORD ) THEN
 61 *
 62 *           Real Non-symmetric Eigenvalue Problem:
 63 *
 64             WRITE( IOUNIT, FMT = 9998 )PATH
 65 *
 66 *           Matrix types
 67 *
 68             WRITE( IOUNIT, FMT = 9988 )
 69             WRITE( IOUNIT, FMT = 9987 )
 70             WRITE( IOUNIT, FMT = 9986 )'pairs ''pairs ''prs.',
 71      $         'prs.'
 72             WRITE( IOUNIT, FMT = 9985 )
 73 *
 74 *           Tests performed
 75 *
 76             WRITE( IOUNIT, FMT = 9984 )'orthogonal''''=transpose',
 77      $         ( '''', J = 16 )
 78 *
 79          ELSE
 80 *
 81 *           Complex Non-symmetric Eigenvalue Problem:
 82 *
 83             WRITE( IOUNIT, FMT = 9997 )PATH
 84 *
 85 *           Matrix types
 86 *
 87             WRITE( IOUNIT, FMT = 9988 )
 88             WRITE( IOUNIT, FMT = 9987 )
 89             WRITE( IOUNIT, FMT = 9986 )'e.vals''e.vals''e.vs',
 90      $         'e.vs'
 91             WRITE( IOUNIT, FMT = 9985 )
 92 *
 93 *           Tests performed
 94 *
 95             WRITE( IOUNIT, FMT = 9984 )'unitary''*=conj.transp.',
 96      $         ( '*', J = 16 )
 97          END IF
 98 *
 99       ELSE IF( LSAMEN( 2, C2, 'ST' ) ) THEN
100 *
101          IF( SORD ) THEN
102 *
103 *           Real Symmetric Eigenvalue Problem:
104 *
105             WRITE( IOUNIT, FMT = 9996 )PATH
106 *
107 *           Matrix types
108 *
109             WRITE( IOUNIT, FMT = 9983 )
110             WRITE( IOUNIT, FMT = 9982 )
111             WRITE( IOUNIT, FMT = 9981 )'Symmetric'
112 *
113 *           Tests performed
114 *
115             WRITE( IOUNIT, FMT = 9968 )
116 *
117          ELSE
118 *
119 *           Complex Hermitian Eigenvalue Problem:
120 *
121             WRITE( IOUNIT, FMT = 9995 )PATH
122 *
123 *           Matrix types
124 *
125             WRITE( IOUNIT, FMT = 9983 )
126             WRITE( IOUNIT, FMT = 9982 )
127             WRITE( IOUNIT, FMT = 9981 )'Hermitian'
128 *
129 *           Tests performed
130 *
131             WRITE( IOUNIT, FMT = 9967 )
132          END IF
133 *
134       ELSE IF( LSAMEN( 2, C2, 'SG' ) ) THEN
135 *
136          IF( SORD ) THEN
137 *
138 *           Real Symmetric Generalized Eigenvalue Problem:
139 *
140             WRITE( IOUNIT, FMT = 9992 )PATH
141 *
142 *           Matrix types
143 *
144             WRITE( IOUNIT, FMT = 9980 )
145             WRITE( IOUNIT, FMT = 9979 )
146             WRITE( IOUNIT, FMT = 9978 )'Symmetric'
147 *
148 *           Tests performed
149 *
150             WRITE( IOUNIT, FMT = 9977 )
151             WRITE( IOUNIT, FMT = 9976 )
152 *
153          ELSE
154 *
155 *           Complex Hermitian Generalized Eigenvalue Problem:
156 *
157             WRITE( IOUNIT, FMT = 9991 )PATH
158 *
159 *           Matrix types
160 *
161             WRITE( IOUNIT, FMT = 9980 )
162             WRITE( IOUNIT, FMT = 9979 )
163             WRITE( IOUNIT, FMT = 9978 )'Hermitian'
164 *
165 *           Tests performed
166 *
167             WRITE( IOUNIT, FMT = 9975 )
168             WRITE( IOUNIT, FMT = 9974 )
169 *
170          END IF
171 *
172       ELSE IF( LSAMEN( 2, C2, 'BD' ) ) THEN
173 *
174          IF( SORD ) THEN
175 *
176 *           Real Singular Value Decomposition:
177 *
178             WRITE( IOUNIT, FMT = 9994 )PATH
179 *
180 *           Matrix types
181 *
182             WRITE( IOUNIT, FMT = 9973 )
183 *
184 *           Tests performed
185 *
186             WRITE( IOUNIT, FMT = 9972 )'orthogonal'
187             WRITE( IOUNIT, FMT = 9971 )
188          ELSE
189 *
190 *           Complex Singular Value Decomposition:
191 *
192             WRITE( IOUNIT, FMT = 9993 )PATH
193 *
194 *           Matrix types
195 *
196             WRITE( IOUNIT, FMT = 9973 )
197 *
198 *           Tests performed
199 *
200             WRITE( IOUNIT, FMT = 9972 )'unitary   '
201             WRITE( IOUNIT, FMT = 9971 )
202          END IF
203 *
204       ELSE IF( LSAMEN( 2, C2, 'BB' ) ) THEN
205 *
206          IF( SORD ) THEN
207 *
208 *           Real General Band reduction to bidiagonal form:
209 *
210             WRITE( IOUNIT, FMT = 9990 )PATH
211 *
212 *           Matrix types
213 *
214             WRITE( IOUNIT, FMT = 9970 )
215 *
216 *           Tests performed
217 *
218             WRITE( IOUNIT, FMT = 9969 )'orthogonal'
219          ELSE
220 *
221 *           Complex Band reduction to bidiagonal form:
222 *
223             WRITE( IOUNIT, FMT = 9989 )PATH
224 *
225 *           Matrix types
226 *
227             WRITE( IOUNIT, FMT = 9970 )
228 *
229 *           Tests performed
230 *
231             WRITE( IOUNIT, FMT = 9969 )'unitary   '
232          END IF
233 *
234       ELSE
235 *
236          WRITE( IOUNIT, FMT = 9999 )PATH
237          RETURN
238       END IF
239 *
240       RETURN
241 *
242  9999 FORMAT1X, A3, ':  no header available' )
243  9998 FORMAT/ 1X, A3, ' -- Real Non-symmetric eigenvalue problem' )
244  9997 FORMAT/ 1X, A3, ' -- Complex Non-symmetric eigenvalue problem' )
245  9996 FORMAT/ 1X, A3, ' -- Real Symmetric eigenvalue problem' )
246  9995 FORMAT/ 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
247  9994 FORMAT/ 1X, A3, ' -- Real Singular Value Decomposition' )
248  9993 FORMAT/ 1X, A3, ' -- Complex Singular Value Decomposition' )
249  9992 FORMAT/ 1X, A3, ' -- Real Symmetric Generalized eigenvalue ',
250      $      'problem' )
251  9991 FORMAT/ 1X, A3, ' -- Complex Hermitian Generalized eigenvalue ',
252      $      'problem' )
253  9990 FORMAT/ 1X, A3, ' -- Real Band reduc. to bidiagonal form' )
254  9989 FORMAT/ 1X, A3, ' -- Complex Band reduc. to bidiagonal form' )
255 *
256  9988 FORMAT' Matrix types (see xCHKHS for details): ' )
257 *
258  9987 FORMAT/ ' Special Matrices:'/ '  1=Zero matrix.             ',
259      $      '           ''  5=Diagonal: geometr. spaced entries.',
260      $      / '  2=Identity matrix.                    ''  6=Diagona',
261      $      'l: clustered entries.'/ '  3=Transposed Jordan block.  ',
262      $      '          ''  7=Diagonal: large, evenly spaced.'/ '  ',
263      $      '4=Diagonal: evenly spaced entries.    ''  8=Diagonal: s',
264      $      'mall, evenly spaced.' )
265  9986 FORMAT' Dense, Non-Symmetric Matrices:'/ '  9=Well-cond., ev',
266      $      'enly spaced eigenvals.'' 14=Ill-cond., geomet. spaced e',
267      $      'igenals.'/ ' 10=Well-cond., geom. spaced eigenvals. ',
268      $      ' 15=Ill-conditioned, clustered e.vals.'/ ' 11=Well-cond',
269      $      'itioned, clustered e.vals. '' 16=Ill-cond., random comp',
270      $      'lex ', A6, / ' 12=Well-cond., random complex ', A6, '   ',
271      $      ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi',
272      $      'tioned, evenly spaced.     '' 18=Ill-cond., small rand.',
273      $      ' complx ', A4 )
274  9985 FORMAT' 19=Matrix with random O(1) entries.    '' 21=Matrix ',
275      $      'with small random entries.'/ ' 20=Matrix with large ran',
276      $      'dom entries.   ' )
277  9984 FORMAT/ ' Tests performed:   ''(H is Hessenberg, T is Schur,',
278      $      ' U and Z are ', A, ','/ 20X, A, ', W is a diagonal matr',
279      $      'ix of eigenvalues,'/ 20X'L and R are the left and rig',
280      $      'ht eigenvector matrices)'/ '  1 = | A - U H U', A1, ' |',
281      $      ' / ( |A| n ulp )         ''  2 = | I - U U', A1, ' | / ',
282      $      '( n ulp )'/ '  3 = | H - Z T Z', A1, ' | / ( |H| n ulp ',
283      $      ')         ''  4 = | I - Z Z', A1, ' | / ( n ulp )',
284      $      / '  5 = | A - UZ T (UZ)', A1, ' | / ( |A| n ulp )     ',
285      $      '  6 = | I - UZ (UZ)', A1, ' | / ( n ulp )'/ '  7 = | T(',
286      $      'e.vects.) - T(no e.vects.) | / ( |T| ulp )'/ '  8 = | W',
287      $      '(e.vects.) - W(no e.vects.) | / ( |W| ulp )'/ '  9 = | ',
288      $      'TR - RW | / ( |T| |R| ulp )     '' 10 = | LT - WL | / (',
289      $      ' |T| |L| ulp )'/ ' 11= |HX - XW| / (|H| |X| ulp)  (inv.',
290      $      'it)'' 12= |YH - WY| / (|H| |Y| ulp)  (inv.it)' )
291 *
292 *     Symmetric/Hermitian eigenproblem
293 *
294  9983 FORMAT' Matrix types (see xDRVST for details): ' )
295 *
296  9982 FORMAT/ ' Special Matrices:'/ '  1=Zero matrix.             ',
297      $      '           ''  5=Diagonal: clustered entries.'/ '  2=',
298      $      'Identity matrix.                    ''  6=Diagonal: lar',
299      $      'ge, evenly spaced.'/ '  3=Diagonal: evenly spaced entri',
300      $      'es.    ''  7=Diagonal: small, evenly spaced.'/ '  4=D',
301      $      'iagonal: geometr. spaced entries.' )
302  9981 FORMAT' Dense ', A, ' Matrices:'/ '  8=Evenly spaced eigen',
303      $      'vals.            '' 12=Small, evenly spaced eigenvals.',
304      $      / '  9=Geometrically spaced eigenvals.     '' 13=Matrix ',
305      $      'with random O(1) entries.'/ ' 10=Clustered eigenvalues.',
306      $      '              '' 14=Matrix with large random entries.',
307      $      / ' 11=Large, evenly spaced eigenvals.     '' 15=Matrix ',
308      $      'with small random entries.' )
309 *
310 *     Symmetric/Hermitian Generalized eigenproblem
311 *
312  9980 FORMAT' Matrix types (see xDRVSG for details): ' )
313 *
314  9979 FORMAT/ ' Special Matrices:'/ '  1=Zero matrix.             ',
315      $      '           ''  5=Diagonal: clustered entries.'/ '  2=',
316      $      'Identity matrix.                    ''  6=Diagonal: lar',
317      $      'ge, evenly spaced.'/ '  3=Diagonal: evenly spaced entri',
318      $      'es.    ''  7=Diagonal: small, evenly spaced.'/ '  4=D',
319      $      'iagonal: geometr. spaced entries.' )
320  9978 FORMAT' Dense or Banded ', A, ' Matrices: ',
321      $      / '  8=Evenly spaced eigenvals.         ',
322      $      ' 15=Matrix with small random entries.',
323      $      / '  9=Geometrically spaced eigenvals.  ',
324      $      ' 16=Evenly spaced eigenvals, KA=1, KB=1.',
325      $      / ' 10=Clustered eigenvalues.           ',
326      $      ' 17=Evenly spaced eigenvals, KA=2, KB=1.',
327      $      / ' 11=Large, evenly spaced eigenvals.  ',
328      $      ' 18=Evenly spaced eigenvals, KA=2, KB=2.',
329      $      / ' 12=Small, evenly spaced eigenvals.  ',
330      $      ' 19=Evenly spaced eigenvals, KA=3, KB=1.',
331      $      / ' 13=Matrix with random O(1) entries. ',
332      $      ' 20=Evenly spaced eigenvals, KA=3, KB=2.',
333      $      / ' 14=Matrix with large random entries.',
334      $      ' 21=Evenly spaced eigenvals, KA=3, KB=3.' )
335  9977 FORMAT/ ' Tests performed:   ',
336      $      / '( For each pair (A,B), where A is of the given type ',
337      $      / ' and B is a random well-conditioned matrix. D is ',
338      $      / ' diagonal, and Z is orthogonal. )',
339      $      / ' 1 = SSYGV, with ITYPE=1 and UPLO=''U'':',
340      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
341      $      / ' 2 = SSPGV, with ITYPE=1 and UPLO=''U'':',
342      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
343      $      / ' 3 = SSBGV, with ITYPE=1 and UPLO=''U'':',
344      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
345      $      / ' 4 = SSYGV, with ITYPE=1 and UPLO=''L'':',
346      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
347      $      / ' 5 = SSPGV, with ITYPE=1 and UPLO=''L'':',
348      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
349      $      / ' 6 = SSBGV, with ITYPE=1 and UPLO=''L'':',
350      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ' )
351  9976 FORMAT' 7 = SSYGV, with ITYPE=2 and UPLO=''U'':',
352      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
353      $      / ' 8 = SSPGV, with ITYPE=2 and UPLO=''U'':',
354      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
355      $      / ' 9 = SSPGV, with ITYPE=2 and UPLO=''L'':',
356      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
357      $      / '10 = SSPGV, with ITYPE=2 and UPLO=''L'':',
358      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
359      $      / '11 = SSYGV, with ITYPE=3 and UPLO=''U'':',
360      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
361      $      / '12 = SSPGV, with ITYPE=3 and UPLO=''U'':',
362      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
363      $      / '13 = SSYGV, with ITYPE=3 and UPLO=''L'':',
364      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
365      $      / '14 = SSPGV, with ITYPE=3 and UPLO=''L'':',
366      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ' )
367  9975 FORMAT/ ' Tests performed:   ',
368      $      / '( For each pair (A,B), where A is of the given type ',
369      $      / ' and B is a random well-conditioned matrix. D is ',
370      $      / ' diagonal, and Z is unitary. )',
371      $      / ' 1 = CHEGV, with ITYPE=1 and UPLO=''U'':',
372      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
373      $      / ' 2 = CHPGV, with ITYPE=1 and UPLO=''U'':',
374      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
375      $      / ' 3 = CHBGV, with ITYPE=1 and UPLO=''U'':',
376      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
377      $      / ' 4 = CHEGV, with ITYPE=1 and UPLO=''L'':',
378      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
379      $      / ' 5 = CHPGV, with ITYPE=1 and UPLO=''L'':',
380      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
381      $      / ' 6 = CHBGV, with ITYPE=1 and UPLO=''L'':',
382      $      '  | A Z - B Z D | / ( |A| |Z| n ulp )     ' )
383  9974 FORMAT' 7 = CHEGV, with ITYPE=2 and UPLO=''U'':',
384      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
385      $      / ' 8 = CHPGV, with ITYPE=2 and UPLO=''U'':',
386      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
387      $      / ' 9 = CHPGV, with ITYPE=2 and UPLO=''L'':',
388      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
389      $      / '10 = CHPGV, with ITYPE=2 and UPLO=''L'':',
390      $      '  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
391      $      / '11 = CHEGV, with ITYPE=3 and UPLO=''U'':',
392      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
393      $      / '12 = CHPGV, with ITYPE=3 and UPLO=''U'':',
394      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
395      $      / '13 = CHEGV, with ITYPE=3 and UPLO=''L'':',
396      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
397      $      / '14 = CHPGV, with ITYPE=3 and UPLO=''L'':',
398      $      '  | B A Z - Z D | / ( |A| |Z| n ulp )     ' )
399 *
400 *     Singular Value Decomposition
401 *
402  9973 FORMAT' Matrix types (see xCHKBD for details):',
403      $      / ' Diagonal matrices:'/ '   1: Zero'28X,
404      $      ' 5: Clustered entries'/ '   2: Identity'24X,
405      $      ' 6: Large, evenly spaced entries',
406      $      / '   3: Evenly spaced entries'11X,
407      $      ' 7: Small, evenly spaced entries',
408      $      / '   4: Geometrically spaced entries',
409      $      / ' General matrices:'/ '   8: Evenly spaced sing. vals.',
410      $      7X'12: Small, evenly spaced sing vals',
411      $      / '   9: Geometrically spaced sing vals  ',
412      $      '13: Random, O(1) entries'/ '  10: Clustered sing. vals.',
413      $      11X'14: Random, scaled near overflow',
414      $      / '  11: Large, evenly spaced sing vals  ',
415      $      '15: Random, scaled near underflow' )
416 *
417  9972 FORMAT/ ' Test ratios:  ',
418      $      '(B: bidiagonal, S: diagonal, Q, P, U, and V: ', A10, / 16X,
419      $      'X: m x nrhs, Y = Q'' X, and Z = U'' Y)',
420      $      / '   1: norm( A - Q B P'' ) / ( norm(A) max(m,n) ulp )',
421      $      / '   2: norm( I - Q'' Q )   / ( m ulp )',
422      $      / '   3: norm( I - P'' P )   / ( n ulp )',
423      $      / '   4: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )'/
424      $      '   5: norm( Y - U Z )    / ( norm(Z) max(min(m,n),k) ulp )'
425      $      , / '   6: norm( I - U'' U )   / ( min(m,n) ulp )',
426      $      / '   7: norm( I - V'' V )   / ( min(m,n) ulp )' )
427  9971 FORMAT'   8: Test ordering of S  (0 if nondecreasing, 1/ulp ',
428      $      ' otherwise)'/
429      $      '   9: norm( S - S2 )     / ( norm(S) ulp ),',
430      $      ' where S2 is computed'/ 44X,
431      $      'without computing U and V''',
432      $      / '  10: Sturm sequence test ',
433      $      '(0 if sing. vals of B within THRESH of S)',
434      $      / '  11: norm( A - (QU) S (V'' P'') ) / ',
435      $      '( norm(A) max(m,n) ulp )'/
436      $      '  12: norm( X - (QU) Z )         / ( |X| max(M,k) ulp )',
437      $      / '  13: norm( I - (QU)''(QU) )      / ( M ulp )',
438      $      / '  14: norm( I - (V'' P'') (P V) )  / ( N ulp )' )
439 *
440 *     Band reduction to bidiagonal form
441 *
442  9970 FORMAT' Matrix types (see xCHKBB for details):',
443      $      / ' Diagonal matrices:'/ '   1: Zero'28X,
444      $      ' 5: Clustered entries'/ '   2: Identity'24X,
445      $      ' 6: Large, evenly spaced entries',
446      $      / '   3: Evenly spaced entries'11X,
447      $      ' 7: Small, evenly spaced entries',
448      $      / '   4: Geometrically spaced entries',
449      $      / ' General matrices:'/ '   8: Evenly spaced sing. vals.',
450      $      7X'12: Small, evenly spaced sing vals',
451      $      / '   9: Geometrically spaced sing vals  ',
452      $      '13: Random, O(1) entries'/ '  10: Clustered sing. vals.',
453      $      11X'14: Random, scaled near overflow',
454      $      / '  11: Large, evenly spaced sing vals  ',
455      $      '15: Random, scaled near underflow' )
456 *
457  9969 FORMAT/ ' Test ratios:  ''(B: upper bidiagonal, Q and P: ',
458      $      A10, / 16X'C: m x nrhs, PT = P'', Y = Q'' C)',
459      $      / ' 1: norm( A - Q B PT ) / ( norm(A) max(m,n) ulp )',
460      $      / ' 2: norm( I - Q'' Q )   / ( m ulp )',
461      $      / ' 3: norm( I - PT PT'' )   / ( n ulp )',
462      $      / ' 4: norm( Y - Q'' C )   / ( norm(Y) max(m,nrhs) ulp )' )
463  9968 FORMAT/ ' Tests performed:  See sdrvst.f' )
464  9967 FORMAT/ ' Tests performed:  See cdrvst.f' )
465 *
466 *     End of SLAHD2
467 *
468       END