1       SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
  2      $                   RESULT )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            KBAND, LDU, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       REAL               AD( * ), AE( * ), RESULT2 ), SD( * ),
 13      $                   SE( * ), U( LDU, * ), WORK( * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  SSTT21 checks a decomposition of the form
 20 *
 21 *     A = U S U'
 22 *
 23 *  where ' means transpose, A is symmetric tridiagonal, U is orthogonal,
 24 *  and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
 25 *  Two tests are performed:
 26 *
 27 *     RESULT(1) = | A - U S U' | / ( |A| n ulp )
 28 *
 29 *     RESULT(2) = | I - UU' | / ( n ulp )
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  N       (input) INTEGER
 35 *          The size of the matrix.  If it is zero, SSTT21 does nothing.
 36 *          It must be at least zero.
 37 *
 38 *  KBAND   (input) INTEGER
 39 *          The bandwidth of the matrix S.  It may only be zero or one.
 40 *          If zero, then S is diagonal, and SE is not referenced.  If
 41 *          one, then S is symmetric tri-diagonal.
 42 *
 43 *  AD      (input) REAL array, dimension (N)
 44 *          The diagonal of the original (unfactored) matrix A.  A is
 45 *          assumed to be symmetric tridiagonal.
 46 *
 47 *  AE      (input) REAL array, dimension (N-1)
 48 *          The off-diagonal of the original (unfactored) matrix A.  A
 49 *          is assumed to be symmetric tridiagonal.  AE(1) is the (1,2)
 50 *          and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
 51 *
 52 *  SD      (input) REAL array, dimension (N)
 53 *          The diagonal of the (symmetric tri-) diagonal matrix S.
 54 *
 55 *  SE      (input) REAL array, dimension (N-1)
 56 *          The off-diagonal of the (symmetric tri-) diagonal matrix S.
 57 *          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is the
 58 *          (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
 59 *          element, etc.
 60 *
 61 *  U       (input) REAL array, dimension (LDU, N)
 62 *          The orthogonal matrix in the decomposition.
 63 *
 64 *  LDU     (input) INTEGER
 65 *          The leading dimension of U.  LDU must be at least N.
 66 *
 67 *  WORK    (workspace) REAL array, dimension (N*(N+1))
 68 *
 69 *  RESULT  (output) REAL array, dimension (2)
 70 *          The values computed by the two tests described above.  The
 71 *          values are currently limited to 1/ulp, to avoid overflow.
 72 *          RESULT(1) is always modified.
 73 *
 74 *  =====================================================================
 75 *
 76 *     .. Parameters ..
 77       REAL               ZERO, ONE
 78       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 79 *     ..
 80 *     .. Local Scalars ..
 81       INTEGER            J
 82       REAL               ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
 83 *     ..
 84 *     .. External Functions ..
 85       REAL               SLAMCH, SLANGE, SLANSY
 86       EXTERNAL           SLAMCH, SLANGE, SLANSY
 87 *     ..
 88 *     .. External Subroutines ..
 89       EXTERNAL           SGEMM, SLASET, SSYR, SSYR2
 90 *     ..
 91 *     .. Intrinsic Functions ..
 92       INTRINSIC          ABSMAXMIN, REAL
 93 *     ..
 94 *     .. Executable Statements ..
 95 *
 96 *     1)      Constants
 97 *
 98       RESULT1 ) = ZERO
 99       RESULT2 ) = ZERO
100       IF( N.LE.0 )
101      $   RETURN
102 *
103       UNFL = SLAMCH( 'Safe minimum' )
104       ULP = SLAMCH( 'Precision' )
105 *
106 *     Do Test 1
107 *
108 *     Copy A & Compute its 1-Norm:
109 *
110       CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
111 *
112       ANORM = ZERO
113       TEMP1 = ZERO
114 *
115       DO 10 J = 1, N - 1
116          WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
117          WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
118          TEMP2 = ABS( AE( J ) )
119          ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
120          TEMP1 = TEMP2
121    10 CONTINUE
122 *
123       WORK( N**2 ) = AD( N )
124       ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
125 *
126 *     Norm of A - USU'
127 *
128       DO 20 J = 1, N
129          CALL SSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
130    20 CONTINUE
131 *
132       IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
133          DO 30 J = 1, N - 1
134             CALL SSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
135      $                  WORK, N )
136    30    CONTINUE
137       END IF
138 *
139       WNORM = SLANSY( '1''L', N, WORK, N, WORK( N**2+1 ) )
140 *
141       IF( ANORM.GT.WNORM ) THEN
142          RESULT1 ) = ( WNORM / ANORM ) / ( N*ULP )
143       ELSE
144          IF( ANORM.LT.ONE ) THEN
145             RESULT1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
146          ELSE
147             RESULT1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
148          END IF
149       END IF
150 *
151 *     Do Test 2
152 *
153 *     Compute  UU' - I
154 *
155       CALL SGEMM( 'N''C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
156      $            N )
157 *
158       DO 40 J = 1, N
159          WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
160    40 CONTINUE
161 *
162       RESULT2 ) = MINREAL( N ), SLANGE( '1', N, N, WORK, N,
163      $              WORK( N**2+1 ) ) ) / ( N*ULP )
164 *
165       RETURN
166 *
167 *     End of SSTT21
168 *
169       END