1       SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
  2      $                   RWORK, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            KD, LDA, LDPT, LDQ, M, N
 10       DOUBLE PRECISION   RESID
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
 14       COMPLEX*16         A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
 15      $                   WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZBDT01 reconstructs a general matrix A from its bidiagonal form
 22 *     A = Q * B * P'
 23 *  where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
 24 *  matrices and B is bidiagonal.
 25 *
 26 *  The test ratio to test the reduction is
 27 *     RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
 28 *  where PT = P' and EPS is the machine precision.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  M       (input) INTEGER
 34 *          The number of rows of the matrices A and Q.
 35 *
 36 *  N       (input) INTEGER
 37 *          The number of columns of the matrices A and P'.
 38 *
 39 *  KD      (input) INTEGER
 40 *          If KD = 0, B is diagonal and the array E is not referenced.
 41 *          If KD = 1, the reduction was performed by xGEBRD; B is upper
 42 *          bidiagonal if M >= N, and lower bidiagonal if M < N.
 43 *          If KD = -1, the reduction was performed by xGBBRD; B is
 44 *          always upper bidiagonal.
 45 *
 46 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 47 *          The m by n matrix A.
 48 *
 49 *  LDA     (input) INTEGER
 50 *          The leading dimension of the array A.  LDA >= max(1,M).
 51 *
 52 *  Q       (input) COMPLEX*16 array, dimension (LDQ,N)
 53 *          The m by min(m,n) unitary matrix Q in the reduction
 54 *          A = Q * B * P'.
 55 *
 56 *  LDQ     (input) INTEGER
 57 *          The leading dimension of the array Q.  LDQ >= max(1,M).
 58 *
 59 *  D       (input) DOUBLE PRECISION array, dimension (min(M,N))
 60 *          The diagonal elements of the bidiagonal matrix B.
 61 *
 62 *  E       (input) DOUBLE PRECISION array, dimension (min(M,N)-1)
 63 *          The superdiagonal elements of the bidiagonal matrix B if
 64 *          m >= n, or the subdiagonal elements of B if m < n.
 65 *
 66 *  PT      (input) COMPLEX*16 array, dimension (LDPT,N)
 67 *          The min(m,n) by n unitary matrix P' in the reduction
 68 *          A = Q * B * P'.
 69 *
 70 *  LDPT    (input) INTEGER
 71 *          The leading dimension of the array PT.
 72 *          LDPT >= max(1,min(M,N)).
 73 *
 74 *  WORK    (workspace) COMPLEX*16 array, dimension (M+N)
 75 *
 76 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
 77 *
 78 *  RESID   (output) DOUBLE PRECISION
 79 *          The test ratio:  norm(A - Q * B * P') / ( n * norm(A) * EPS )
 80 *
 81 *  =====================================================================
 82 *
 83 *     .. Parameters ..
 84       DOUBLE PRECISION   ZERO, ONE
 85       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 86 *     ..
 87 *     .. Local Scalars ..
 88       INTEGER            I, J
 89       DOUBLE PRECISION   ANORM, EPS
 90 *     ..
 91 *     .. External Functions ..
 92       DOUBLE PRECISION   DLAMCH, DZASUM, ZLANGE
 93       EXTERNAL           DLAMCH, DZASUM, ZLANGE
 94 *     ..
 95 *     .. External Subroutines ..
 96       EXTERNAL           ZCOPY, ZGEMV
 97 *     ..
 98 *     .. Intrinsic Functions ..
 99       INTRINSIC          DBLEDCMPLXMAXMIN
100 *     ..
101 *     .. Executable Statements ..
102 *
103 *     Quick return if possible
104 *
105       IF( M.LE.0 .OR. N.LE.0 ) THEN
106          RESID = ZERO
107          RETURN
108       END IF
109 *
110 *     Compute A - Q * B * P' one column at a time.
111 *
112       RESID = ZERO
113       IF( KD.NE.0 ) THEN
114 *
115 *        B is bidiagonal.
116 *
117          IF( KD.NE.0 .AND. M.GE.N ) THEN
118 *
119 *           B is upper bidiagonal and M >= N.
120 *
121             DO 20 J = 1, N
122                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
123                DO 10 I = 1, N - 1
124                   WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
125    10          CONTINUE
126                WORK( M+N ) = D( N )*PT( N, J )
127                CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ,
128      $                     WORK( M+1 ), 1DCMPLX( ONE ), WORK, 1 )
129                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
130    20       CONTINUE
131          ELSE IF( KD.LT.0 ) THEN
132 *
133 *           B is upper bidiagonal and M < N.
134 *
135             DO 40 J = 1, N
136                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
137                DO 30 I = 1, M - 1
138                   WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
139    30          CONTINUE
140                WORK( M+M ) = D( M )*PT( M, J )
141                CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
142      $                     WORK( M+1 ), 1DCMPLX( ONE ), WORK, 1 )
143                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
144    40       CONTINUE
145          ELSE
146 *
147 *           B is lower bidiagonal.
148 *
149             DO 60 J = 1, N
150                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
151                WORK( M+1 ) = D( 1 )*PT( 1, J )
152                DO 50 I = 2, M
153                   WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
154      $                          D( I )*PT( I, J )
155    50          CONTINUE
156                CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
157      $                     WORK( M+1 ), 1DCMPLX( ONE ), WORK, 1 )
158                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
159    60       CONTINUE
160          END IF
161       ELSE
162 *
163 *        B is diagonal.
164 *
165          IF( M.GE.N ) THEN
166             DO 80 J = 1, N
167                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
168                DO 70 I = 1, N
169                   WORK( M+I ) = D( I )*PT( I, J )
170    70          CONTINUE
171                CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ,
172      $                     WORK( M+1 ), 1DCMPLX( ONE ), WORK, 1 )
173                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
174    80       CONTINUE
175          ELSE
176             DO 100 J = 1, N
177                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
178                DO 90 I = 1, M
179                   WORK( M+I ) = D( I )*PT( I, J )
180    90          CONTINUE
181                CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
182      $                     WORK( M+1 ), 1DCMPLX( ONE ), WORK, 1 )
183                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
184   100       CONTINUE
185          END IF
186       END IF
187 *
188 *     Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
189 *
190       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
191       EPS = DLAMCH( 'Precision' )
192 *
193       IF( ANORM.LE.ZERO ) THEN
194          IF( RESID.NE.ZERO )
195      $      RESID = ONE / EPS
196       ELSE
197          IF( ANORM.GE.RESID ) THEN
198             RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
199          ELSE
200             IF( ANORM.LT.ONE ) THEN
201                RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
202      $                 ( DBLE( N )*EPS )
203             ELSE
204                RESID = MIN( RESID / ANORM, DBLE( N ) ) /
205      $                 ( DBLE( N )*EPS )
206             END IF
207          END IF
208       END IF
209 *
210       RETURN
211 *
212 *     End of ZBDT01
213 *
214       END