1       SUBROUTINE ZDRVGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  2      $                   THRSHN, NOUNIT, A, LDA, B, S, T, S2, T2, Q,
  3      $                   LDQ, Z, ALPHA1, BETA1, ALPHA2, BETA2, VL, VR,
  4      $                   WORK, LWORK, RWORK, RESULT, INFO )
  5 *
  6 *  -- LAPACK test routine (version 3.1) --
  7 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       INTEGER            INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
 12       DOUBLE PRECISION   THRESH, THRSHN
 13 *     ..
 14 *     .. Array Arguments ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZDRVGG  checks the nonsymmetric generalized eigenvalue driver
 20 *  routines.
 21 *                                T          T        T
 22 *  ZGEGS factors A and B as Q S Z  and Q T Z , where   means
 23 *  transpose, T is upper triangular, S is in generalized Schur form
 24 *  (upper triangular), and Q and Z are unitary.  It also
 25 *  computes the generalized eigenvalues (alpha(1),beta(1)), ...,
 26 *  (alpha(n),beta(n)), where alpha(j)=S(j,j) and beta(j)=T(j,j) --
 27 *  thus, w(j) = alpha(j)/beta(j) is a root of the generalized
 28 *  eigenvalue problem
 29 *
 30 *      det( A - w(j) B ) = 0
 31 *
 32 *  and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
 33 *  problem
 34 *
 35 *      det( m(j) A - B ) = 0
 36 *
 37 *  ZGEGV computes the generalized eigenvalues (alpha(1),beta(1)), ...,
 38 *  (alpha(n),beta(n)), the matrix L whose columns contain the
 39 *  generalized left eigenvectors l, and the matrix R whose columns
 40 *  contain the generalized right eigenvectors r for the pair (A,B).
 41 *
 42 *  When ZDRVGG is called, a number of matrix "sizes" ("n's") and a
 43 *  number of matrix "types" are specified.  For each size ("n")
 44 *  and each type of matrix, one matrix will be generated and used
 45 *  to test the nonsymmetric eigenroutines.  For each matrix, 7
 46 *  tests will be performed and compared with the threshhold THRESH:
 47 *
 48 *  Results from ZGEGS:
 49 *
 50 *                   H
 51 *  (1)   | A - Q S Z  | / ( |A| n ulp )
 52 *
 53 *                   H
 54 *  (2)   | B - Q T Z  | / ( |B| n ulp )
 55 *
 56 *                H
 57 *  (3)   | I - QQ  | / ( n ulp )
 58 *
 59 *                H
 60 *  (4)   | I - ZZ  | / ( n ulp )
 61 *
 62 *  (5)   maximum over j of D(j)  where:
 63 *
 64 *                      |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|
 65 *            D(j) = ------------------------ + -----------------------
 66 *                   max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)
 67 *
 68 *  Results from ZGEGV:
 69 *
 70 *  (6)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of
 71 *
 72 *     | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )
 73 *
 74 *        where l**H is the conjugate tranpose of l.
 75 *
 76 *  (7)   max over all right eigenvalue/-vector pairs (beta/alpha,r) of
 77 *
 78 *        | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
 79 *
 80 *  Test Matrices
 81 *  ---- --------
 82 *
 83 *  The sizes of the test matrices are specified by an array
 84 *  NN(1:NSIZES); the value of each element NN(j) specifies one size.
 85 *  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
 86 *  DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 87 *  Currently, the list of possible types is:
 88 *
 89 *  (1)  ( 0, 0 )         (a pair of zero matrices)
 90 *
 91 *  (2)  ( I, 0 )         (an identity and a zero matrix)
 92 *
 93 *  (3)  ( 0, I )         (an identity and a zero matrix)
 94 *
 95 *  (4)  ( I, I )         (a pair of identity matrices)
 96 *
 97 *          t   t
 98 *  (5)  ( J , J  )       (a pair of transposed Jordan blocks)
 99 *
100 *                                      t                ( I   0  )
101 *  (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
102 *                                   ( 0   I  )          ( 0   J  )
103 *                        and I is a k x k identity and J a (k+1)x(k+1)
104 *                        Jordan block; k=(N-1)/2
105 *
106 *  (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal
107 *                        matrix with those diagonal entries.)
108 *  (8)  ( I, D )
109 *
110 *  (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big
111 *
112 *  (10) ( small*D, big*I )
113 *
114 *  (11) ( big*I, small*D )
115 *
116 *  (12) ( small*I, big*D )
117 *
118 *  (13) ( big*D, big*I )
119 *
120 *  (14) ( small*D, small*I )
121 *
122 *  (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
123 *                         D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
124 *            t   t
125 *  (16) Q ( J , J ) Z     where Q and Z are random unitary matrices.
126 *
127 *  (17) Q ( T1, T2 ) Z    where T1 and T2 are upper triangular matrices
128 *                         with random O(1) entries above the diagonal
129 *                         and diagonal entries diag(T1) =
130 *                         ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
131 *                         ( 0, N-3, N-4,..., 1, 0, 0 )
132 *
133 *  (18) Q ( T1, T2 ) Z    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
134 *                         diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
135 *                         s = machine precision.
136 *
137 *  (19) Q ( T1, T2 ) Z    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
138 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
139 *
140 *                                                         N-5
141 *  (20) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
142 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
143 *
144 *  (21) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
145 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
146 *                         where r1,..., r(N-4) are random.
147 *
148 *  (22) Q ( big*T1, small*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
149 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
150 *
151 *  (23) Q ( small*T1, big*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
152 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
153 *
154 *  (24) Q ( small*T1, small*T2 ) Z  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
155 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
156 *
157 *  (25) Q ( big*T1, big*T2 ) Z      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
158 *                                   diag(T2) = ( 0, 1, ..., 1, 0, 0 )
159 *
160 *  (26) Q ( T1, T2 ) Z     where T1 and T2 are random upper-triangular
161 *                          matrices.
162 *
163 *  Arguments
164 *  =========
165 *
166 *  NSIZES  (input) INTEGER
167 *          The number of sizes of matrices to use.  If it is zero,
168 *          ZDRVGG does nothing.  It must be at least zero.
169 *
170 *  NN      (input) INTEGER array, dimension (NSIZES)
171 *          An array containing the sizes to be used for the matrices.
172 *          Zero values will be skipped.  The values must be at least
173 *          zero.
174 *
175 *  NTYPES  (input) INTEGER
176 *          The number of elements in DOTYPE.   If it is zero, ZDRVGG
177 *          does nothing.  It must be at least zero.  If it is MAXTYP+1
178 *          and NSIZES is 1, then an additional type, MAXTYP+1 is
179 *          defined, which is to use whatever matrix is in A.  This
180 *          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
181 *          DOTYPE(MAXTYP+1) is .TRUE. .
182 *
183 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
184 *          If DOTYPE(j) is .TRUE., then for each size in NN a
185 *          matrix of that size and of type j will be generated.
186 *          If NTYPES is smaller than the maximum number of types
187 *          defined (PARAMETER MAXTYP), then types NTYPES+1 through
188 *          MAXTYP will not be generated.  If NTYPES is larger
189 *          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
190 *          will be ignored.
191 *
192 *  ISEED   (input/output) INTEGER array, dimension (4)
193 *          On entry ISEED specifies the seed of the random number
194 *          generator. The array elements should be between 0 and 4095;
195 *          if not they will be reduced mod 4096.  Also, ISEED(4) must
196 *          be odd.  The random number generator uses a linear
197 *          congruential sequence limited to small integers, and so
198 *          should produce machine independent random numbers. The
199 *          values of ISEED are changed on exit, and can be used in the
200 *          next call to ZDRVGG to continue the same random number
201 *          sequence.
202 *
203 *  THRESH  (input) DOUBLE PRECISION
204 *          A test will count as "failed" if the "error", computed as
205 *          described above, exceeds THRESH.  Note that the error is
206 *          scaled to be O(1), so THRESH should be a reasonably small
207 *          multiple of 1, e.g., 10 or 100.  In particular, it should
208 *          not depend on the precision (single vs. double) or the size
209 *          of the matrix.  It must be at least zero.
210 *
211 *  THRSHN  (input) DOUBLE PRECISION
212 *          Threshhold for reporting eigenvector normalization error.
213 *          If the normalization of any eigenvector differs from 1 by
214 *          more than THRSHN*ulp, then a special error message will be
215 *          printed.  (This is handled separately from the other tests,
216 *          since only a compiler or programming error should cause an
217 *          error message, at least if THRSHN is at least 5--10.)
218 *
219 *  NOUNIT  (input) INTEGER
220 *          The FORTRAN unit number for printing out error messages
221 *          (e.g., if a routine returns IINFO not equal to 0.)
222 *
223 *  A       (input/workspace) COMPLEX*16 array, dimension (LDA, max(NN))
224 *          Used to hold the original A matrix.  Used as input only
225 *          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
226 *          DOTYPE(MAXTYP+1)=.TRUE.
227 *
228 *  LDA     (input) INTEGER
229 *          The leading dimension of A, B, S, T, S2, and T2.
230 *          It must be at least 1 and at least max( NN ).
231 *
232 *  B       (input/workspace) COMPLEX*16 array, dimension (LDA, max(NN))
233 *          Used to hold the original B matrix.  Used as input only
234 *          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
235 *          DOTYPE(MAXTYP+1)=.TRUE.
236 *
237 *  S       (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
238 *          The upper triangular matrix computed from A by ZGEGS.
239 *
240 *  T       (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
241 *          The upper triangular matrix computed from B by ZGEGS.
242 *
243 *  S2      (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
244 *          The matrix computed from A by ZGEGV.  This will be the
245 *          Schur (upper triangular) form of some matrix related to A,
246 *          but will not, in general, be the same as S.
247 *
248 *  T2      (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
249 *          The matrix computed from B by ZGEGV.  This will be the
250 *          Schur form of some matrix related to B, but will not, in
251 *          general, be the same as T.
252 *
253 *  Q       (workspace) COMPLEX*16 array, dimension (LDQ, max(NN))
254 *          The (left) unitary matrix computed by ZGEGS.
255 *
256 *  LDQ     (input) INTEGER
257 *          The leading dimension of Q, Z, VL, and VR.  It must
258 *          be at least 1 and at least max( NN ).
259 *
260 *  Z       (workspace) COMPLEX*16 array, dimension (LDQ, max(NN))
261 *          The (right) unitary matrix computed by ZGEGS.
262 *
263 *  ALPHA1  (workspace) COMPLEX*16 array, dimension (max(NN))
264 *  BETA1   (workspace) COMPLEX*16 array, dimension (max(NN))
265 *          The generalized eigenvalues of (A,B) computed by ZGEGS.
266 *          ALPHA1(k) / BETA1(k)  is the k-th generalized eigenvalue of
267 *          the matrices in A and B.
268 *
269 *  ALPHA2  (workspace) COMPLEX*16 array, dimension (max(NN))
270 *  BETA2   (workspace) COMPLEX*16 array, dimension (max(NN))
271 *          The generalized eigenvalues of (A,B) computed by ZGEGV.
272 *          ALPHA2(k) / BETA2(k)  is the k-th generalized eigenvalue of
273 *          the matrices in A and B.
274 *
275 *  VL      (workspace) COMPLEX*16 array, dimension (LDQ, max(NN))
276 *          The (lower triangular) left eigenvector matrix for the
277 *          matrices in A and B.
278 *
279 *  VR      (workspace) COMPLEX*16 array, dimension (LDQ, max(NN))
280 *          The (upper triangular) right eigenvector matrix for the
281 *          matrices in A and B.
282 *
283 *  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
284 *
285 *  LWORK   (input) INTEGER
286 *          The number of entries in WORK.  This must be at least
287 *          MAX( 2*N, N*(NB+1), (k+1)*(2*k+N+1) ), where "k" is the
288 *          sum of the blocksize and number-of-shifts for ZHGEQZ, and
289 *          NB is the greatest of the blocksizes for ZGEQRF, ZUNMQR,
290 *          and ZUNGQR.  (The blocksizes and the number-of-shifts are
291 *          retrieved through calls to ILAENV.)
292 *
293 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (8*N)
294 *
295 *  RESULT  (output) DOUBLE PRECISION array, dimension (7)
296 *          The values computed by the tests described above.
297 *          The values are currently limited to 1/ulp, to avoid
298 *          overflow.
299 *
300 *  INFO    (output) INTEGER
301 *          = 0:  successful exit
302 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
303 *          > 0:  A routine returned an error code.  INFO is the
304 *                absolute value of the INFO value returned.
305 *
306 *  =====================================================================
307 *
308       LOGICAL            DOTYPE( * )
309       INTEGER            ISEED( 4 ), NN( * )
310       DOUBLE PRECISION   RESULT* ), RWORK( * )
311       COMPLEX*16         A( LDA, * ), ALPHA1( * ), ALPHA2( * ),
312      $                   B( LDA, * ), BETA1( * ), BETA2( * ),
313      $                   Q( LDQ, * ), S( LDA, * ), S2( LDA, * ),
314      $                   T( LDA, * ), T2( LDA, * ), VL( LDQ, * ),
315      $                   VR( LDQ, * ), WORK( * ), Z( LDQ, * )
316 *     ..
317 *     .. Parameters ..
318       DOUBLE PRECISION   ZERO, ONE
319       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
320       COMPLEX*16         CZERO, CONE
321       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
322      $                   CONE = ( 1.0D+00.0D+0 ) )
323       INTEGER            MAXTYP
324       PARAMETER          ( MAXTYP = 26 )
325 *     ..
326 *     .. Local Scalars ..
327       LOGICAL            BADNN
328       INTEGER            I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
329      $                   LWKOPT, MTYPES, N, N1, NB, NBZ, NERRS, NMATS,
330      $                   NMAX, NS, NTEST, NTESTT
331       DOUBLE PRECISION   SAFMAX, SAFMIN, TEMP1, TEMP2, ULP, ULPINV
332       COMPLEX*16         CTEMP, X
333 *     ..
334 *     .. Local Arrays ..
335       LOGICAL            LASIGN( MAXTYP ), LBSIGN( MAXTYP )
336       INTEGER            IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
337      $                   KATYPE( MAXTYP ), KAZERO( MAXTYP ),
338      $                   KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
339      $                   KBZERO( MAXTYP ), KCLASS( MAXTYP ),
340      $                   KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
341       DOUBLE PRECISION   DUMMA( 4 ), RMAGN( 03 )
342 *     ..
343 *     .. External Functions ..
344       INTEGER            ILAENV
345       DOUBLE PRECISION   DLAMCH
346       COMPLEX*16         ZLARND
347       EXTERNAL           ILAENV, DLAMCH, ZLARND
348 *     ..
349 *     .. External Subroutines ..
350       EXTERNAL           ALASVM, DLABAD, XERBLA, ZGEGS, ZGEGV, ZGET51,
351      $                   ZGET52, ZLACPY, ZLARFG, ZLASET, ZLATM4, ZUNM2R
352 *     ..
353 *     .. Intrinsic Functions ..
354       INTRINSIC          ABSDBLEDCONJGDIMAGMAXMINSIGN
355 *     ..
356 *     .. Statement Functions ..
357       DOUBLE PRECISION   ABS1
358 *     ..
359 *     .. Statement Function definitions ..
360       ABS1( X ) = ABSDBLE( X ) ) + ABSDIMAG( X ) )
361 *     ..
362 *     .. Data statements ..
363       DATA               KCLASS / 15*110*21*3 /
364       DATA               KZ1 / 012133 /
365       DATA               KZ2 / 001211 /
366       DATA               KADD / 000032 /
367       DATA               KATYPE / 0101234144114,
368      $                   442458794*40 /
369       DATA               KBTYPE / 00112-3141144,
370      $                   11-42-48*80 /
371       DATA               KAZERO / 6*1212*22*12*2313,
372      $                   4*54*31 /
373       DATA               KBZERO / 6*1122*12*22*1414,
374      $                   4*64*41 /
375       DATA               KAMAGN / 8*12323237*1233,
376      $                   21 /
377       DATA               KBMAGN / 8*13232237*1323,
378      $                   21 /
379       DATA               KTRIAN / 16*010*1 /
380       DATA               LASIGN / 6*.FALSE..TRUE..FALSE.2*.TRUE.,
381      $                   2*.FALSE.3*.TRUE..FALSE..TRUE.,
382      $                   3*.FALSE.5*.TRUE..FALSE. /
383       DATA               LBSIGN / 7*.FALSE..TRUE.2*.FALSE.,
384      $                   2*.TRUE.2*.FALSE..TRUE..FALSE..TRUE.,
385      $                   9*.FALSE. /
386 *     ..
387 *     .. Executable Statements ..
388 *
389 *     Check for errors
390 *
391       INFO = 0
392 *
393       BADNN = .FALSE.
394       NMAX = 1
395       DO 10 J = 1, NSIZES
396          NMAX = MAX( NMAX, NN( J ) )
397          IF( NN( J ).LT.0 )
398      $      BADNN = .TRUE.
399    10 CONTINUE
400 *
401 *     Maximum blocksize and shift -- we assume that blocksize and number
402 *     of shifts are monotone increasing functions of N.
403 *
404       NB = MAX1, ILAENV( 1'ZGEQRF'' ', NMAX, NMAX, -1-1 ),
405      $     ILAENV( 1'ZUNMQR''LC', NMAX, NMAX, NMAX, -1 ),
406      $     ILAENV( 1'ZUNGQR'' ', NMAX, NMAX, NMAX, -1 ) )
407       NBZ = ILAENV( 1'ZHGEQZ''SII', NMAX, 1, NMAX, 0 )
408       NS = ILAENV( 4'ZHGEQZ''SII', NMAX, 1, NMAX, 0 )
409       I1 = NBZ + NS
410       LWKOPT = MAX2*NMAX, NMAX*( NB+1 ), ( 2*I1+NMAX+1 )*( I1+1 ) )
411 *
412 *     Check for errors
413 *
414       IF( NSIZES.LT.0 ) THEN
415          INFO = -1
416       ELSE IF( BADNN ) THEN
417          INFO = -2
418       ELSE IF( NTYPES.LT.0 ) THEN
419          INFO = -3
420       ELSE IF( THRESH.LT.ZERO ) THEN
421          INFO = -6
422       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
423          INFO = -10
424       ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
425          INFO = -19
426       ELSE IF( LWKOPT.GT.LWORK ) THEN
427          INFO = -30
428       END IF
429 *
430       IF( INFO.NE.0 ) THEN
431          CALL XERBLA( 'ZDRVGG'-INFO )
432          RETURN
433       END IF
434 *
435 *     Quick return if possible
436 *
437       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
438      $   RETURN
439 *
440       ULP = DLAMCH( 'Precision' )
441       SAFMIN = DLAMCH( 'Safe minimum' )
442       SAFMIN = SAFMIN / ULP
443       SAFMAX = ONE / SAFMIN
444       CALL DLABAD( SAFMIN, SAFMAX )
445       ULPINV = ONE / ULP
446 *
447 *     The values RMAGN(2:3) depend on N, see below.
448 *
449       RMAGN( 0 ) = ZERO
450       RMAGN( 1 ) = ONE
451 *
452 *     Loop over sizes, types
453 *
454       NTESTT = 0
455       NERRS = 0
456       NMATS = 0
457 *
458       DO 160 JSIZE = 1, NSIZES
459          N = NN( JSIZE )
460          N1 = MAX1, N )
461          RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
462          RMAGN( 3 ) = SAFMIN*ULPINV*N1
463 *
464          IF( NSIZES.NE.1 ) THEN
465             MTYPES = MIN( MAXTYP, NTYPES )
466          ELSE
467             MTYPES = MIN( MAXTYP+1, NTYPES )
468          END IF
469 *
470          DO 150 JTYPE = 1, MTYPES
471             IF.NOT.DOTYPE( JTYPE ) )
472      $         GO TO 150
473             NMATS = NMATS + 1
474             NTEST = 0
475 *
476 *           Save ISEED in case of an error.
477 *
478             DO 20 J = 14
479                IOLDSD( J ) = ISEED( J )
480    20       CONTINUE
481 *
482 *           Initialize RESULT
483 *
484             DO 30 J = 17
485                RESULT( J ) = ZERO
486    30       CONTINUE
487 *
488 *           Compute A and B
489 *
490 *           Description of control parameters:
491 *
492 *           KZLASS: =1 means w/o rotation, =2 means w/ rotation,
493 *                   =3 means random.
494 *           KATYPE: the "type" to be passed to ZLATM4 for computing A.
495 *           KAZERO: the pattern of zeros on the diagonal for A:
496 *                   =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
497 *                   =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
498 *                   =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of
499 *                   non-zero entries.)
500 *           KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
501 *                   =2: large, =3: small.
502 *           LASIGN: .TRUE. if the diagonal elements of A are to be
503 *                   multiplied by a random magnitude 1 number.
504 *           KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
505 *           KTRIAN: =0: don't fill in the upper triangle, =1: do.
506 *           KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
507 *           RMAGN:  used to implement KAMAGN and KBMAGN.
508 *
509             IF( MTYPES.GT.MAXTYP )
510      $         GO TO 110
511             IINFO = 0
512             IF( KCLASS( JTYPE ).LT.3 ) THEN
513 *
514 *              Generate A (w/o rotation)
515 *
516                IFABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
517                   IN = 2*( ( N-1 ) / 2 ) + 1
518                   IFIN.NE.N )
519      $               CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
520                ELSE
521                   IN = N
522                END IF
523                CALL ZLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
524      $                      KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ),
525      $                      RMAGN( KAMAGN( JTYPE ) ), ULP,
526      $                      RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
527      $                      ISEED, A, LDA )
528                IADD = KADD( KAZERO( JTYPE ) )
529                IF( IADD.GT.0 .AND. IADD.LE.N )
530      $            A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
531 *
532 *              Generate B (w/o rotation)
533 *
534                IFABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
535                   IN = 2*( ( N-1 ) / 2 ) + 1
536                   IFIN.NE.N )
537      $               CALL ZLASET( 'Full', N, N, CZERO, CZERO, B, LDA )
538                ELSE
539                   IN = N
540                END IF
541                CALL ZLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
542      $                      KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ),
543      $                      RMAGN( KBMAGN( JTYPE ) ), ONE,
544      $                      RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
545      $                      ISEED, B, LDA )
546                IADD = KADD( KBZERO( JTYPE ) )
547                IF( IADD.NE.0 .AND. IADD.LE.N )
548      $            B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
549 *
550                IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
551 *
552 *                 Include rotations
553 *
554 *                 Generate Q, Z as Householder transformations times
555 *                 a diagonal matrix.
556 *
557                   DO 50 JC = 1, N - 1
558                      DO 40 JR = JC, N
559                         Q( JR, JC ) = ZLARND( 3, ISEED )
560                         Z( JR, JC ) = ZLARND( 3, ISEED )
561    40                CONTINUE
562                      CALL ZLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
563      $                            WORK( JC ) )
564                      WORK( 2*N+JC ) = SIGN( ONE, DBLE( Q( JC, JC ) ) )
565                      Q( JC, JC ) = CONE
566                      CALL ZLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
567      $                            WORK( N+JC ) )
568                      WORK( 3*N+JC ) = SIGN( ONE, DBLE( Z( JC, JC ) ) )
569                      Z( JC, JC ) = CONE
570    50             CONTINUE
571                   CTEMP = ZLARND( 3, ISEED )
572                   Q( N, N ) = CONE
573                   WORK( N ) = CZERO
574                   WORK( 3*N ) = CTEMP / ABS( CTEMP )
575                   CTEMP = ZLARND( 3, ISEED )
576                   Z( N, N ) = CONE
577                   WORK( 2*N ) = CZERO
578                   WORK( 4*N ) = CTEMP / ABS( CTEMP )
579 *
580 *                 Apply the diagonal matrices
581 *
582                   DO 70 JC = 1, N
583                      DO 60 JR = 1, N
584                         A( JR, JC ) = WORK( 2*N+JR )*
585      $                                DCONJG( WORK( 3*N+JC ) )*
586      $                                A( JR, JC )
587                         B( JR, JC ) = WORK( 2*N+JR )*
588      $                                DCONJG( WORK( 3*N+JC ) )*
589      $                                B( JR, JC )
590    60                CONTINUE
591    70             CONTINUE
592                   CALL ZUNM2R( 'L''N', N, N, N-1, Q, LDQ, WORK, A,
593      $                         LDA, WORK( 2*N+1 ), IINFO )
594                   IF( IINFO.NE.0 )
595      $               GO TO 100
596                   CALL ZUNM2R( 'R''C', N, N, N-1, Z, LDQ, WORK( N+1 ),
597      $                         A, LDA, WORK( 2*N+1 ), IINFO )
598                   IF( IINFO.NE.0 )
599      $               GO TO 100
600                   CALL ZUNM2R( 'L''N', N, N, N-1, Q, LDQ, WORK, B,
601      $                         LDA, WORK( 2*N+1 ), IINFO )
602                   IF( IINFO.NE.0 )
603      $               GO TO 100
604                   CALL ZUNM2R( 'R''C', N, N, N-1, Z, LDQ, WORK( N+1 ),
605      $                         B, LDA, WORK( 2*N+1 ), IINFO )
606                   IF( IINFO.NE.0 )
607      $               GO TO 100
608                END IF
609             ELSE
610 *
611 *              Random matrices
612 *
613                DO 90 JC = 1, N
614                   DO 80 JR = 1, N
615                      A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
616      $                             ZLARND( 4, ISEED )
617                      B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
618      $                             ZLARND( 4, ISEED )
619    80             CONTINUE
620    90          CONTINUE
621             END IF
622 *
623   100       CONTINUE
624 *
625             IF( IINFO.NE.0 ) THEN
626                WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
627      $            IOLDSD
628                INFO = ABS( IINFO )
629                RETURN
630             END IF
631 *
632   110       CONTINUE
633 *
634 *           Call ZGEGS to compute H, T, Q, Z, alpha, and beta.
635 *
636             CALL ZLACPY( ' ', N, N, A, LDA, S, LDA )
637             CALL ZLACPY( ' ', N, N, B, LDA, T, LDA )
638             NTEST = 1
639             RESULT1 ) = ULPINV
640 *
641             CALL ZGEGS( 'V''V', N, S, LDA, T, LDA, ALPHA1, BETA1, Q,
642      $                  LDQ, Z, LDQ, WORK, LWORK, RWORK, IINFO )
643             IF( IINFO.NE.0 ) THEN
644                WRITE( NOUNIT, FMT = 9999 )'ZGEGS', IINFO, N, JTYPE,
645      $            IOLDSD
646                INFO = ABS( IINFO )
647                GO TO 130
648             END IF
649 *
650             NTEST = 4
651 *
652 *           Do tests 1--4
653 *
654             CALL ZGET51( 1, N, A, LDA, S, LDA, Q, LDQ, Z, LDQ, WORK,
655      $                   RWORK, RESULT1 ) )
656             CALL ZGET51( 1, N, B, LDA, T, LDA, Q, LDQ, Z, LDQ, WORK,
657      $                   RWORK, RESULT2 ) )
658             CALL ZGET51( 3, N, B, LDA, T, LDA, Q, LDQ, Q, LDQ, WORK,
659      $                   RWORK, RESULT3 ) )
660             CALL ZGET51( 3, N, B, LDA, T, LDA, Z, LDQ, Z, LDQ, WORK,
661      $                   RWORK, RESULT4 ) )
662 *
663 *           Do test 5: compare eigenvalues with diagonals.
664 *
665             TEMP1 = ZERO
666 *
667             DO 120 J = 1, N
668                TEMP2 = ( ABS1( ALPHA1( J )-S( J, J ) ) /
669      $                 MAX( SAFMIN, ABS1( ALPHA1( J ) ), ABS1( S( J,
670      $                 J ) ) )+ABS1( BETA1( J )-T( J, J ) ) /
671      $                 MAX( SAFMIN, ABS1( BETA1( J ) ), ABS1( T( J,
672      $                 J ) ) ) ) / ULP
673                TEMP1 = MAX( TEMP1, TEMP2 )
674   120       CONTINUE
675             RESULT5 ) = TEMP1
676 *
677 *           Call ZGEGV to compute S2, T2, VL, and VR, do tests.
678 *
679 *           Eigenvalues and Eigenvectors
680 *
681             CALL ZLACPY( ' ', N, N, A, LDA, S2, LDA )
682             CALL ZLACPY( ' ', N, N, B, LDA, T2, LDA )
683             NTEST = 6
684             RESULT6 ) = ULPINV
685 *
686             CALL ZGEGV( 'V''V', N, S2, LDA, T2, LDA, ALPHA2, BETA2,
687      $                  VL, LDQ, VR, LDQ, WORK, LWORK, RWORK, IINFO )
688             IF( IINFO.NE.0 ) THEN
689                WRITE( NOUNIT, FMT = 9999 )'ZGEGV', IINFO, N, JTYPE,
690      $            IOLDSD
691                INFO = ABS( IINFO )
692                GO TO 130
693             END IF
694 *
695             NTEST = 7
696 *
697 *           Do Tests 6 and 7
698 *
699             CALL ZGET52( .TRUE., N, A, LDA, B, LDA, VL, LDQ, ALPHA2,
700      $                   BETA2, WORK, RWORK, DUMMA( 1 ) )
701             RESULT6 ) = DUMMA( 1 )
702             IF( DUMMA( 2 ).GT.THRSHN ) THEN
703                WRITE( NOUNIT, FMT = 9998 )'Left''ZGEGV', DUMMA( 2 ),
704      $            N, JTYPE, IOLDSD
705             END IF
706 *
707             CALL ZGET52( .FALSE., N, A, LDA, B, LDA, VR, LDQ, ALPHA2,
708      $                   BETA2, WORK, RWORK, DUMMA( 1 ) )
709             RESULT7 ) = DUMMA( 1 )
710             IF( DUMMA( 2 ).GT.THRESH ) THEN
711                WRITE( NOUNIT, FMT = 9998 )'Right''ZGEGV', DUMMA( 2 ),
712      $            N, JTYPE, IOLDSD
713             END IF
714 *
715 *           End of Loop -- Check for RESULT(j) > THRESH
716 *
717   130       CONTINUE
718 *
719             NTESTT = NTESTT + NTEST
720 *
721 *           Print out tests which fail.
722 *
723             DO 140 JR = 1, NTEST
724                IFRESULT( JR ).GE.THRESH ) THEN
725 *
726 *                 If this is the first test to fail,
727 *                 print a header to the data file.
728 *
729                   IF( NERRS.EQ.0 ) THEN
730                      WRITE( NOUNIT, FMT = 9997 )'ZGG'
731 *
732 *                    Matrix types
733 *
734                      WRITE( NOUNIT, FMT = 9996 )
735                      WRITE( NOUNIT, FMT = 9995 )
736                      WRITE( NOUNIT, FMT = 9994 )'Unitary'
737 *
738 *                    Tests performed
739 *
740                      WRITE( NOUNIT, FMT = 9993 )'unitary''*',
741      $                  'conjugate transpose', ( '*', J = 15 )
742 *
743                   END IF
744                   NERRS = NERRS + 1
745                   IFRESULT( JR ).LT.10000.0D0 ) THEN
746                      WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
747      $                  RESULT( JR )
748                   ELSE
749                      WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
750      $                  RESULT( JR )
751                   END IF
752                END IF
753   140       CONTINUE
754 *
755   150    CONTINUE
756   160 CONTINUE
757 *
758 *     Summary
759 *
760       CALL ALASVM( 'ZGG', NOUNIT, NERRS, NTESTT, 0 )
761       RETURN
762 *
763  9999 FORMAT' ZDRVGG: ', A, ' returned INFO=', I6, '.'/ 9X'N=',
764      $      I6, ', JTYPE=', I6, ', ISEED=('3( I5, ',' ), I5, ')' )
765 *
766  9998 FORMAT' ZDRVGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
767      $      'normalized.'/ ' Bits of error=', 0P, G10.3','9X,
768      $      'N=', I6, ', JTYPE=', I6, ', ISEED=('3( I5, ',' ), I5,
769      $      ')' )
770 *
771  9997 FORMAT/ 1X, A3,
772      $      ' -- Complex Generalized eigenvalue problem driver' )
773 *
774  9996 FORMAT' Matrix types (see ZDRVGG for details): ' )
775 *
776  9995 FORMAT' Special Matrices:'23X,
777      $      '(J''=transposed Jordan block)',
778      $      / '   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J'',J'')  ',
779      $      '6=(diag(J'',I), diag(I,J''))'/ ' Diagonal Matrices:  ( ',
780      $      'D=diag(0,1,2,...) )'/ '   7=(D,I)   9=(large*D, small*I',
781      $      ')  11=(large*I, small*D)  13=(large*D, large*I)'/
782      $      '   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D) ',
783      $      ' 14=(small*D, small*I)'/ '  15=(D, reversed D)' )
784  9994 FORMAT' Matrices Rotated by Random ', A, ' Matrices U, V:',
785      $      / '  16=Transposed Jordan Blocks             19=geometric ',
786      $      'alpha, beta=0,1'/ '  17=arithm. alpha&beta             ',
787      $      '      20=arithmetic alpha, beta=0,1'/ '  18=clustered ',
788      $      'alpha, beta=0,1            21=random alpha, beta=0,1',
789      $      / ' Large & Small Matrices:'/ '  22=(large, small)   ',
790      $      '23=(small,large)    24=(small,small)    25=(large,large)',
791      $      / '  26=random O(1) matrices.' )
792 *
793  9993 FORMAT/ ' Tests performed:  (S is Schur, T is triangular, ',
794      $      'Q and Z are ', A, ','/ 20X,
795      $      'l and r are the appropriate left and right'/ 19X,
796      $      'eigenvectors, resp., a is alpha, b is beta, and'/ 19X, A,
797      $      ' means ', A, '.)'/ ' 1 = | A - Q S Z', A,
798      $      ' | / ( |A| n ulp )      2 = | B - Q T Z', A,
799      $      ' | / ( |B| n ulp )'/ ' 3 = | I - QQ', A,
800      $      ' | / ( n ulp )             4 = | I - ZZ', A,
801      $      ' | / ( n ulp )'/
802      $      ' 5 = difference between (alpha,beta) and diagonals of',
803      $      ' (S,T)'/ ' 6 = max | ( b A - a B )', A,
804      $      ' l | / const.   7 = max | ( b A - a B ) r | / const.',
805      $      / 1X )
806  9992 FORMAT' Matrix order=', I5, ', type=', I2, ', seed=',
807      $      4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
808  9991 FORMAT' Matrix order=', I5, ', type=', I2, ', seed=',
809      $      4( I4, ',' ), ' result ', I3, ' is', 1P, D10.3 )
810 *
811 *     End of ZDRVGG
812 *
813       END