1       SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
  2      $                   WORK, RWORK, RESULT )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       LOGICAL            LEFT
 10       INTEGER            LDA, LDB, LDE, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   RESULT2 ), RWORK( * )
 14       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 15      $                   BETA( * ), E( LDE, * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZGET52  does an eigenvector check for the generalized eigenvalue
 22 *  problem.
 23 *
 24 *  The basic test for right eigenvectors is:
 25 *
 26 *                            | b(i) A E(i) -  a(i) B E(i) |
 27 *          RESULT(1) = max   -------------------------------
 28 *                       i    n ulp max( |b(i) A|, |a(i) B| )
 29 *
 30 *  using the 1-norm.  Here, a(i)/b(i) = w is the i-th generalized
 31 *  eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
 32 *  generalized eigenvalue of m A - B.
 33 *
 34 *                          H   H  _      _
 35 *  For left eigenvectors, A , B , a, and b  are used.
 36 *
 37 *  ZGET52 also tests the normalization of E.  Each eigenvector is
 38 *  supposed to be normalized so that the maximum "absolute value"
 39 *  of its elements is 1, where in this case, "absolute value"
 40 *  of a complex value x is  |Re(x)| + |Im(x)| ; let us call this
 41 *  maximum "absolute value" norm of a vector v  M(v).  
 42 *  If a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
 43 *  vector. The normalization test is:
 44 *
 45 *          RESULT(2) =      max       | M(v(i)) - 1 | / ( n ulp )
 46 *                     eigenvectors v(i)
 47 *
 48 *
 49 *  Arguments
 50 *  =========
 51 *
 52 *  LEFT    (input) LOGICAL
 53 *          =.TRUE.:  The eigenvectors in the columns of E are assumed
 54 *                    to be *left* eigenvectors.
 55 *          =.FALSE.: The eigenvectors in the columns of E are assumed
 56 *                    to be *right* eigenvectors.
 57 *
 58 *  N       (input) INTEGER
 59 *          The size of the matrices.  If it is zero, ZGET52 does
 60 *          nothing.  It must be at least zero.
 61 *
 62 *  A       (input) COMPLEX*16 array, dimension (LDA, N)
 63 *          The matrix A.
 64 *
 65 *  LDA     (input) INTEGER
 66 *          The leading dimension of A.  It must be at least 1
 67 *          and at least N.
 68 *
 69 *  B       (input) COMPLEX*16 array, dimension (LDB, N)
 70 *          The matrix B.
 71 *
 72 *  LDB     (input) INTEGER
 73 *          The leading dimension of B.  It must be at least 1
 74 *          and at least N.
 75 *
 76 *  E       (input) COMPLEX*16 array, dimension (LDE, N)
 77 *          The matrix of eigenvectors.  It must be O( 1 ).
 78 *
 79 *  LDE     (input) INTEGER
 80 *          The leading dimension of E.  It must be at least 1 and at
 81 *          least N.
 82 *
 83 *  ALPHA   (input) COMPLEX*16 array, dimension (N)
 84 *          The values a(i) as described above, which, along with b(i),
 85 *          define the generalized eigenvalues.
 86 *
 87 *  BETA    (input) COMPLEX*16 array, dimension (N)
 88 *          The values b(i) as described above, which, along with a(i),
 89 *          define the generalized eigenvalues.
 90 *
 91 *  WORK    (workspace) COMPLEX*16 array, dimension (N**2)
 92 *
 93 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
 94 *
 95 *  RESULT  (output) DOUBLE PRECISION array, dimension (2)
 96 *          The values computed by the test described above.  If A E or
 97 *          B E is likely to overflow, then RESULT(1:2) is set to
 98 *          10 / ulp.
 99 *
100 *  =====================================================================
101 *
102 *     .. Parameters ..
103       DOUBLE PRECISION   ZERO, ONE
104       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
105       COMPLEX*16         CZERO, CONE
106       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
107      $                   CONE = ( 1.0D+00.0D+0 ) )
108 *     ..
109 *     .. Local Scalars ..
110       CHARACTER          NORMAB, TRANS
111       INTEGER            J, JVEC
112       DOUBLE PRECISION   ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
113      $                   ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
114      $                   ULP
115       COMPLEX*16         ACOEFF, ALPHAI, BCOEFF, BETAI, X
116 *     ..
117 *     .. External Functions ..
118       DOUBLE PRECISION   DLAMCH, ZLANGE
119       EXTERNAL           DLAMCH, ZLANGE
120 *     ..
121 *     .. External Subroutines ..
122       EXTERNAL           ZGEMV
123 *     ..
124 *     .. Intrinsic Functions ..
125       INTRINSIC          ABSDBLEDCONJGDIMAGMAX
126 *     ..
127 *     .. Statement Functions ..
128       DOUBLE PRECISION   ABS1
129 *     ..
130 *     .. Statement Function definitions ..
131       ABS1( X ) = ABSDBLE( X ) ) + ABSDIMAG( X ) )
132 *     ..
133 *     .. Executable Statements ..
134 *
135       RESULT1 ) = ZERO
136       RESULT2 ) = ZERO
137       IF( N.LE.0 )
138      $   RETURN
139 *
140       SAFMIN = DLAMCH( 'Safe minimum' )
141       SAFMAX = ONE / SAFMIN
142       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
143 *
144       IF( LEFT ) THEN
145          TRANS = 'C'
146          NORMAB = 'I'
147       ELSE
148          TRANS = 'N'
149          NORMAB = 'O'
150       END IF
151 *
152 *     Norm of A, B, and E:
153 *
154       ANORM = MAX( ZLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
155       BNORM = MAX( ZLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
156       ENORM = MAX( ZLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
157       ALFMAX = SAFMAX / MAX( ONE, BNORM )
158       BETMAX = SAFMAX / MAX( ONE, ANORM )
159 *
160 *     Compute error matrix.
161 *     Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| )
162 *
163       DO 10 JVEC = 1, N
164          ALPHAI = ALPHA( JVEC )
165          BETAI = BETA( JVEC )
166          ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
167          IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
168      $       ABMAX.LT.ONE ) THEN
169             SCALE = ONE / MAX( ABMAX, SAFMIN )
170             ALPHAI = SCALE*ALPHAI
171             BETAI = SCALE*BETAI
172          END IF
173          SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
174      $           SAFMIN )
175          ACOEFF = SCALE*BETAI
176          BCOEFF = SCALE*ALPHAI
177          IF( LEFT ) THEN
178             ACOEFF = DCONJG( ACOEFF )
179             BCOEFF = DCONJG( BCOEFF )
180          END IF
181          CALL ZGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
182      $               CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
183          CALL ZGEMV( TRANS, N, N, -BCOEFF, B, LDA, E( 1, JVEC ), 1,
184      $               CONE, WORK( N*( JVEC-1 )+1 ), 1 )
185    10 CONTINUE
186 *
187       ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
188 *
189 *     Compute RESULT(1)
190 *
191       RESULT1 ) = ERRNRM / ULP
192 *
193 *     Normalization of E:
194 *
195       ENRMER = ZERO
196       DO 30 JVEC = 1, N
197          TEMP1 = ZERO
198          DO 20 J = 1, N
199             TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
200    20    CONTINUE
201          ENRMER = MAX( ENRMER, TEMP1-ONE )
202    30 CONTINUE
203 *
204 *     Compute RESULT(2) : the normalization error in E.
205 *
206       RESULT2 ) = ENRMER / ( DBLE( N )*ULP )
207 *
208       RETURN
209 *
210 *     End of ZGET52
211 *
212       END