1       SUBROUTINE CDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
  2      $                   NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
  3      $                   COPYB, C, S, COPYS, WORK, RWORK, IWORK,
  4      $                   NOUT )
  5 *
  6 *  -- LAPACK test routine (version 3.1.1) --
  7 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  8 *     January 2007
  9 *
 10 *     .. Scalar Arguments ..
 11       LOGICAL            TSTERR
 12       INTEGER            NM, NN, NNB, NNS, NOUT
 13       REAL               THRESH
 14 *     ..
 15 *     .. Array Arguments ..
 16       LOGICAL            DOTYPE( * )
 17       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
 18      $                   NVAL( * ), NXVAL( * )
 19       REAL               COPYS( * ), RWORK( * ), S( * )
 20       COMPLEX            A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
 21      $                   WORK( * )
 22 *     ..
 23 *
 24 *  Purpose
 25 *  =======
 26 *
 27 *  CDRVLS tests the least squares driver routines CGELS, CGELSX, CGELSS,
 28 *  CGELSY and CGELSD.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
 34 *          The matrix types to be used for testing.  Matrices of type j
 35 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 36 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 37 *          The matrix of type j is generated as follows:
 38 *          j=1: A = U*D*V where U and V are random unitary matrices
 39 *               and D has random entries (> 0.1) taken from a uniform
 40 *               distribution (0,1). A is full rank.
 41 *          j=2: The same of 1, but A is scaled up.
 42 *          j=3: The same of 1, but A is scaled down.
 43 *          j=4: A = U*D*V where U and V are random unitary matrices
 44 *               and D has 3*min(M,N)/4 random entries (> 0.1) taken
 45 *               from a uniform distribution (0,1) and the remaining
 46 *               entries set to 0. A is rank-deficient.
 47 *          j=5: The same of 4, but A is scaled up.
 48 *          j=6: The same of 5, but A is scaled down.
 49 *
 50 *  NM      (input) INTEGER
 51 *          The number of values of M contained in the vector MVAL.
 52 *
 53 *  MVAL    (input) INTEGER array, dimension (NM)
 54 *          The values of the matrix row dimension M.
 55 *
 56 *  NN      (input) INTEGER
 57 *          The number of values of N contained in the vector NVAL.
 58 *
 59 *  NVAL    (input) INTEGER array, dimension (NN)
 60 *          The values of the matrix column dimension N.
 61 *
 62 *  NNB     (input) INTEGER
 63 *          The number of values of NB and NX contained in the
 64 *          vectors NBVAL and NXVAL.  The blocking parameters are used
 65 *          in pairs (NB,NX).
 66 *
 67 *  NBVAL   (input) INTEGER array, dimension (NNB)
 68 *          The values of the blocksize NB.
 69 *
 70 *  NXVAL   (input) INTEGER array, dimension (NNB)
 71 *          The values of the crossover point NX.
 72 *
 73 *  NNS     (input) INTEGER
 74 *          The number of values of NRHS contained in the vector NSVAL.
 75 *
 76 *  NSVAL   (input) INTEGER array, dimension (NNS)
 77 *          The values of the number of right hand sides NRHS.
 78 *
 79 *  THRESH  (input) REAL
 80 *          The threshold value for the test ratios.  A result is
 81 *          included in the output file if RESULT >= THRESH.  To have
 82 *          every test ratio printed, use THRESH = 0.
 83 *
 84 *  TSTERR  (input) LOGICAL
 85 *          Flag that indicates whether error exits are to be tested.
 86 *
 87 *  A       (workspace) COMPLEX array, dimension (MMAX*NMAX)
 88 *          where MMAX is the maximum value of M in MVAL and NMAX is the
 89 *          maximum value of N in NVAL.
 90 *
 91 *  COPYA   (workspace) COMPLEX array, dimension (MMAX*NMAX)
 92 *
 93 *  B       (workspace) COMPLEX array, dimension (MMAX*NSMAX)
 94 *          where MMAX is the maximum value of M in MVAL and NSMAX is the
 95 *          maximum value of NRHS in NSVAL.
 96 *
 97 *  COPYB   (workspace) COMPLEX array, dimension (MMAX*NSMAX)
 98 *
 99 *  C       (workspace) COMPLEX array, dimension (MMAX*NSMAX)
100 *
101 *  S       (workspace) REAL array, dimension
102 *                      (min(MMAX,NMAX))
103 *
104 *  COPYS   (workspace) REAL array, dimension
105 *                      (min(MMAX,NMAX))
106 *
107 *  WORK    (workspace) COMPLEX array, dimension
108 *                      (MMAX*NMAX + 4*NMAX + MMAX).
109 *
110 *  RWORK   (workspace) REAL array, dimension (5*NMAX-1)
111 *
112 *  IWORK   (workspace) INTEGER array, dimension (15*NMAX)
113 *
114 *  NOUT    (input) INTEGER
115 *          The unit number for output.
116 *
117 *  =====================================================================
118 *
119 *     .. Parameters ..
120       INTEGER            NTESTS
121       PARAMETER          ( NTESTS = 18 )
122       INTEGER            SMLSIZ
123       PARAMETER          ( SMLSIZ = 25 )
124       REAL               ONE, ZERO
125       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
126       COMPLEX            CONE, CZERO
127       PARAMETER          ( CONE = ( 1.0E+00.0E+0 ),
128      $                   CZERO = ( 0.0E+00.0E+0 ) )
129 *     ..
130 *     .. Local Scalars ..
131       CHARACTER          TRANS
132       CHARACTER*3        PATH
133       INTEGER            CRANK, I, IM, IN, INB, INFO, INS, IRANK,
134      $                   ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
135      $                   LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
136      $                   NFAIL, NRHS, NROWS, NRUN, RANK
137       REAL               EPS, NORMA, NORMB, RCOND
138 *     ..
139 *     .. Local Arrays ..
140       INTEGER            ISEED( 4 ), ISEEDY( 4 )
141       REAL               RESULT( NTESTS )
142 *     ..
143 *     .. External Functions ..
144       REAL               CQRT12, CQRT14, CQRT17, SASUM, SLAMCH
145       EXTERNAL           CQRT12, CQRT14, CQRT17, SASUM, SLAMCH
146 *     ..
147 *     .. External Subroutines ..
148       EXTERNAL           ALAERH, ALAHD, ALASVM, CERRLS, CGELS, CGELSD,
149      $                   CGELSS, CGELSX, CGELSY, CGEMM, CLACPY, CLARNV,
150      $                   CQRT13, CQRT15, CQRT16, CSSCAL, SAXPY, 
151      $                   XLAENV
152 *     ..
153 *     .. Intrinsic Functions ..
154       INTRINSIC          MAXMIN, REAL, SQRT
155 *     ..
156 *     .. Scalars in Common ..
157       LOGICAL            LERR, OK
158       CHARACTER*32       SRNAMT
159       INTEGER            INFOT, IOUNIT
160 *     ..
161 *     .. Common blocks ..
162       COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
163       COMMON             / SRNAMC / SRNAMT
164 *     ..
165 *     .. Data statements ..
166       DATA               ISEEDY / 1988198919901991 /
167 *     ..
168 *     .. Executable Statements ..
169 *
170 *     Initialize constants and the random number seed.
171 *
172       PATH( 11 ) = 'Complex precision'
173       PATH( 23 ) = 'LS'
174       NRUN = 0
175       NFAIL = 0
176       NERRS = 0
177       DO 10 I = 14
178          ISEED( I ) = ISEEDY( I )
179    10 CONTINUE
180       EPS = SLAMCH( 'Epsilon' )
181 *
182 *     Threshold for rank estimation
183 *
184       RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
185 *
186 *     Test the error exits
187 *
188       CALL XLAENV( 9, SMLSIZ )
189       IF( TSTERR )
190      $   CALL CERRLS( PATH, NOUT )
191 *
192 *     Print the header if NM = 0 or NN = 0 and THRESH = 0.
193 *
194       IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
195      $   CALL ALAHD( NOUT, PATH )
196       INFOT = 0
197 *
198       DO 140 IM = 1, NM
199          M = MVAL( IM )
200          LDA = MAX1, M )
201 *
202          DO 130 IN = 1, NN
203             N = NVAL( IN )
204             MNMIN = MIN( M, N )
205             LDB = MAX1, M, N )
206 *
207             DO 120 INS = 1, NNS
208                NRHS = NSVAL( INS )
209                LWORK = MAX1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
210      $                 M*N+4*MNMIN+MAX( M, N ), 2*N+M )
211 *
212                DO 110 IRANK = 12
213                   DO 100 ISCALE = 13
214                      ITYPE = ( IRANK-1 )*3 + ISCALE
215                      IF.NOT.DOTYPE( ITYPE ) )
216      $                  GO TO 100
217 *
218                      IF( IRANK.EQ.1 ) THEN
219 *
220 *                       Test CGELS
221 *
222 *                       Generate a matrix of scaling type ISCALE
223 *
224                         CALL CQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
225      $                               ISEED )
226                         DO 40 INB = 1, NNB
227                            NB = NBVAL( INB )
228                            CALL XLAENV( 1, NB )
229                            CALL XLAENV( 3, NXVAL( INB ) )
230 *
231                            DO 30 ITRAN = 12
232                               IF( ITRAN.EQ.1 ) THEN
233                                  TRANS = 'N'
234                                  NROWS = M
235                                  NCOLS = N
236                               ELSE
237                                  TRANS = 'C'
238                                  NROWS = N
239                                  NCOLS = M
240                               END IF
241                               LDWORK = MAX1, NCOLS )
242 *
243 *                             Set up a consistent rhs
244 *
245                               IF( NCOLS.GT.0 ) THEN
246                                  CALL CLARNV( 2, ISEED, NCOLS*NRHS,
247      $                                        WORK )
248                                  CALL CSSCAL( NCOLS*NRHS,
249      $                                        ONE / REAL( NCOLS ), WORK,
250      $                                        1 )
251                               END IF
252                               CALL CGEMM( TRANS, 'No transpose', NROWS,
253      $                                    NRHS, NCOLS, CONE, COPYA, LDA,
254      $                                    WORK, LDWORK, CZERO, B, LDB )
255                               CALL CLACPY( 'Full', NROWS, NRHS, B, LDB,
256      $                                     COPYB, LDB )
257 *
258 *                             Solve LS or overdetermined system
259 *
260                               IF( M.GT.0 .AND. N.GT.0 ) THEN
261                                  CALL CLACPY( 'Full', M, N, COPYA, LDA,
262      $                                        A, LDA )
263                                  CALL CLACPY( 'Full', NROWS, NRHS,
264      $                                        COPYB, LDB, B, LDB )
265                               END IF
266                               SRNAMT = 'CGELS '
267                               CALL CGELS( TRANS, M, N, NRHS, A, LDA, B,
268      $                                    LDB, WORK, LWORK, INFO )
269 *
270                               IF( INFO.NE.0 )
271      $                           CALL ALAERH( PATH, 'CGELS ', INFO, 0,
272      $                                        TRANS, M, N, NRHS, -1, NB,
273      $                                        ITYPE, NFAIL, NERRS,
274      $                                        NOUT )
275 *
276 *                             Check correctness of results
277 *
278                               LDWORK = MAX1, NROWS )
279                               IF( NROWS.GT.0 .AND. NRHS.GT.0 )
280      $                           CALL CLACPY( 'Full', NROWS, NRHS,
281      $                                        COPYB, LDB, C, LDB )
282                               CALL CQRT16( TRANS, M, N, NRHS, COPYA,
283      $                                     LDA, B, LDB, C, LDB, RWORK,
284      $                                     RESULT1 ) )
285 *
286                               IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
287      $                            ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
288 *
289 *                                Solving LS system
290 *
291                                  RESULT2 ) = CQRT17( TRANS, 1, M, N,
292      $                                         NRHS, COPYA, LDA, B, LDB,
293      $                                         COPYB, LDB, C, WORK,
294      $                                         LWORK )
295                               ELSE
296 *
297 *                                Solving overdetermined system
298 *
299                                  RESULT2 ) = CQRT14( TRANS, M, N,
300      $                                         NRHS, COPYA, LDA, B, LDB,
301      $                                         WORK, LWORK )
302                               END IF
303 *
304 *                             Print information about the tests that
305 *                             did not pass the threshold.
306 *
307                               DO 20 K = 12
308                                  IFRESULT( K ).GE.THRESH ) THEN
309                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
310      $                                 CALL ALAHD( NOUT, PATH )
311                                     WRITE( NOUT, FMT = 9999 )TRANS, M,
312      $                                 N, NRHS, NB, ITYPE, K,
313      $                                 RESULT( K )
314                                     NFAIL = NFAIL + 1
315                                  END IF
316    20                         CONTINUE
317                               NRUN = NRUN + 2
318    30                      CONTINUE
319    40                   CONTINUE
320                      END IF
321 *
322 *                    Generate a matrix of scaling type ISCALE and rank
323 *                    type IRANK.
324 *
325                      CALL CQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
326      $                            COPYB, LDB, COPYS, RANK, NORMA, NORMB,
327      $                            ISEED, WORK, LWORK )
328 *
329 *                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
330 *
331                      DO 50 J = 1, N
332                         IWORK( J ) = 0
333    50                CONTINUE
334                      LDWORK = MAX1, M )
335 *
336 *                    Test CGELSX
337 *
338 *                    CGELSX:  Compute the minimum-norm solution X
339 *                    to min( norm( A * X - B ) )
340 *                    using a complete orthogonal factorization.
341 *
342                      CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
343                      CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB )
344 *
345                      SRNAMT = 'CGELSX'
346                      CALL CGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK,
347      $                            RCOND, CRANK, WORK, RWORK, INFO )
348 *
349                      IF( INFO.NE.0 )
350      $                  CALL ALAERH( PATH, 'CGELSX', INFO, 0' ', M, N,
351      $                               NRHS, -1, NB, ITYPE, NFAIL, NERRS,
352      $                               NOUT )
353 *
354 *                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )
355 *
356 *                    Test 3:  Compute relative error in svd
357 *                             workspace: M*N + 4*MIN(M,N) + MAX(M,N)
358 *
359                      RESULT3 ) = CQRT12( CRANK, CRANK, A, LDA, COPYS,
360      $                             WORK, LWORK, RWORK )
361 *
362 *                    Test 4:  Compute error in solution
363 *                             workspace:  M*NRHS + M
364 *
365                      CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
366      $                            LDWORK )
367                      CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
368      $                            LDA, B, LDB, WORK, LDWORK, RWORK,
369      $                            RESULT4 ) )
370 *
371 *                    Test 5:  Check norm of r'*A
372 *                             workspace: NRHS*(M+N)
373 *
374                      RESULT5 ) = ZERO
375                      IF( M.GT.CRANK )
376      $                  RESULT5 ) = CQRT17( 'No transpose'1, M, N,
377      $                                NRHS, COPYA, LDA, B, LDB, COPYB,
378      $                                LDB, C, WORK, LWORK )
379 *
380 *                    Test 6:  Check if x is in the rowspace of A
381 *                             workspace: (M+NRHS)*(N+2)
382 *
383                      RESULT6 ) = ZERO
384 *
385                      IF( N.GT.CRANK )
386      $                  RESULT6 ) = CQRT14( 'No transpose', M, N,
387      $                                NRHS, COPYA, LDA, B, LDB, WORK,
388      $                                LWORK )
389 *
390 *                    Print information about the tests that did not
391 *                    pass the threshold.
392 *
393                      DO 60 K = 36
394                         IFRESULT( K ).GE.THRESH ) THEN
395                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
396      $                        CALL ALAHD( NOUT, PATH )
397                            WRITE( NOUT, FMT = 9998 )M, N, NRHS, 0,
398      $                        ITYPE, K, RESULT( K )
399                            NFAIL = NFAIL + 1
400                         END IF
401    60                CONTINUE
402                      NRUN = NRUN + 4
403 *
404 *                    Loop for testing different block sizes.
405 *
406                      DO 90 INB = 1, NNB
407                         NB = NBVAL( INB )
408                         CALL XLAENV( 1, NB )
409                         CALL XLAENV( 3, NXVAL( INB ) )
410 *
411 *                       Test CGELSY
412 *
413 *                       CGELSY:  Compute the minimum-norm solution
414 *                       X to min( norm( A * X - B ) )
415 *                       using the rank-revealing orthogonal
416 *                       factorization.
417 *
418                         CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
419                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
420      $                               LDB )
421 *
422 *                       Initialize vector IWORK.
423 *
424                         DO 70 J = 1, N
425                            IWORK( J ) = 0
426    70                   CONTINUE
427 *
428 *                       Set LWLSY to the adequate value.
429 *
430                         LWLSY = MNMIN + MAX2*MNMIN, NB*( N+1 ),
431      $                          MNMIN+NB*NRHS )
432                         LWLSY = MAX1, LWLSY )
433 *
434                         SRNAMT = 'CGELSY'
435                         CALL CGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
436      $                               RCOND, CRANK, WORK, LWLSY, RWORK,
437      $                               INFO )
438                         IF( INFO.NE.0 )
439      $                     CALL ALAERH( PATH, 'CGELSY', INFO, 0' ', M,
440      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
441      $                                  NERRS, NOUT )
442 *
443 *                       workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
444 *
445 *                       Test 7:  Compute relative error in svd
446 *                                workspace: M*N + 4*MIN(M,N) + MAX(M,N)
447 *
448                         RESULT7 ) = CQRT12( CRANK, CRANK, A, LDA,
449      $                                COPYS, WORK, LWORK, RWORK )
450 *
451 *                       Test 8:  Compute error in solution
452 *                                workspace:  M*NRHS + M
453 *
454                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
455      $                               LDWORK )
456                         CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
457      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
458      $                               RESULT8 ) )
459 *
460 *                       Test 9:  Check norm of r'*A
461 *                                workspace: NRHS*(M+N)
462 *
463                         RESULT9 ) = ZERO
464                         IF( M.GT.CRANK )
465      $                     RESULT9 ) = CQRT17( 'No transpose'1, M,
466      $                                   N, NRHS, COPYA, LDA, B, LDB,
467      $                                   COPYB, LDB, C, WORK, LWORK )
468 *
469 *                       Test 10:  Check if x is in the rowspace of A
470 *                                workspace: (M+NRHS)*(N+2)
471 *
472                         RESULT10 ) = ZERO
473 *
474                         IF( N.GT.CRANK )
475      $                     RESULT10 ) = CQRT14( 'No transpose', M, N,
476      $                                    NRHS, COPYA, LDA, B, LDB,
477      $                                    WORK, LWORK )
478 *
479 *                       Test CGELSS
480 *
481 *                       CGELSS:  Compute the minimum-norm solution
482 *                       X to min( norm( A * X - B ) )
483 *                       using the SVD.
484 *
485                         CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
486                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
487      $                               LDB )
488                         SRNAMT = 'CGELSS'
489                         CALL CGELSS( M, N, NRHS, A, LDA, B, LDB, S,
490      $                               RCOND, CRANK, WORK, LWORK, RWORK,
491      $                               INFO )
492 *
493                         IF( INFO.NE.0 )
494      $                     CALL ALAERH( PATH, 'CGELSS', INFO, 0' ', M,
495      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
496      $                                  NERRS, NOUT )
497 *
498 *                       workspace used: 3*min(m,n) +
499 *                                       max(2*min(m,n),nrhs,max(m,n))
500 *
501 *                       Test 11:  Compute relative error in svd
502 *
503                         IF( RANK.GT.0 ) THEN
504                            CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
505                            RESULT11 ) = SASUM( MNMIN, S, 1 ) /
506      $                                    SASUM( MNMIN, COPYS, 1 ) /
507      $                                    ( EPS*REAL( MNMIN ) )
508                         ELSE
509                            RESULT11 ) = ZERO
510                         END IF
511 *
512 *                       Test 12:  Compute error in solution
513 *
514                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
515      $                               LDWORK )
516                         CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
517      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
518      $                               RESULT12 ) )
519 *
520 *                       Test 13:  Check norm of r'*A
521 *
522                         RESULT13 ) = ZERO
523                         IF( M.GT.CRANK )
524      $                     RESULT13 ) = CQRT17( 'No transpose'1, M,
525      $                                    N, NRHS, COPYA, LDA, B, LDB,
526      $                                    COPYB, LDB, C, WORK, LWORK )
527 *
528 *                       Test 14:  Check if x is in the rowspace of A
529 *
530                         RESULT14 ) = ZERO
531                         IF( N.GT.CRANK )
532      $                     RESULT14 ) = CQRT14( 'No transpose', M, N,
533      $                                    NRHS, COPYA, LDA, B, LDB,
534      $                                    WORK, LWORK )
535 *
536 *                       Test CGELSD
537 *
538 *                       CGELSD:  Compute the minimum-norm solution X
539 *                       to min( norm( A * X - B ) ) using a
540 *                       divide and conquer SVD.
541 *
542                         CALL XLAENV( 925 )
543 *
544                         CALL CLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
545                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, B,
546      $                               LDB )
547 *
548                         SRNAMT = 'CGELSD'
549                         CALL CGELSD( M, N, NRHS, A, LDA, B, LDB, S,
550      $                               RCOND, CRANK, WORK, LWORK, RWORK,
551      $                               IWORK, INFO )
552                         IF( INFO.NE.0 )
553      $                     CALL ALAERH( PATH, 'CGELSD', INFO, 0' ', M,
554      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
555      $                                  NERRS, NOUT )
556 *
557 *                       Test 15:  Compute relative error in svd
558 *
559                         IF( RANK.GT.0 ) THEN
560                            CALL SAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
561                            RESULT15 ) = SASUM( MNMIN, S, 1 ) /
562      $                                    SASUM( MNMIN, COPYS, 1 ) /
563      $                                    ( EPS*REAL( MNMIN ) )
564                         ELSE
565                            RESULT15 ) = ZERO
566                         END IF
567 *
568 *                       Test 16:  Compute error in solution
569 *
570                         CALL CLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
571      $                               LDWORK )
572                         CALL CQRT16( 'No transpose', M, N, NRHS, COPYA,
573      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
574      $                               RESULT16 ) )
575 *
576 *                       Test 17:  Check norm of r'*A
577 *
578                         RESULT17 ) = ZERO
579                         IF( M.GT.CRANK )
580      $                     RESULT17 ) = CQRT17( 'No transpose'1, M,
581      $                                    N, NRHS, COPYA, LDA, B, LDB,
582      $                                    COPYB, LDB, C, WORK, LWORK )
583 *
584 *                       Test 18:  Check if x is in the rowspace of A
585 *
586                         RESULT18 ) = ZERO
587                         IF( N.GT.CRANK )
588      $                     RESULT18 ) = CQRT14( 'No transpose', M, N,
589      $                                    NRHS, COPYA, LDA, B, LDB,
590      $                                    WORK, LWORK )
591 *
592 *                       Print information about the tests that did not
593 *                       pass the threshold.
594 *
595                         DO 80 K = 7, NTESTS
596                            IFRESULT( K ).GE.THRESH ) THEN
597                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
598      $                           CALL ALAHD( NOUT, PATH )
599                               WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
600      $                           ITYPE, K, RESULT( K )
601                               NFAIL = NFAIL + 1
602                            END IF
603    80                   CONTINUE
604                         NRUN = NRUN + 12
605 *
606    90                CONTINUE
607   100             CONTINUE
608   110          CONTINUE
609   120       CONTINUE
610   130    CONTINUE
611   140 CONTINUE
612 *
613 *     Print a summary of the results.
614 *
615       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
616 *
617  9999 FORMAT' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
618      $      ', NB=', I4, ', type', I2, ', test(', I2, ')='G12.5 )
619  9998 FORMAT' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
620      $      ', type', I2, ', test(', I2, ')='G12.5 )
621       RETURN
622 *
623 *     End of CDRVLS
624 *
625       END