1 SUBROUTINE CGERQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
2 $ INFO )
3 *
4 * -- LAPACK routine (version 3.1) --
5 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
6 * November 2006
7 *
8 * .. Scalar Arguments ..
9 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
10 * ..
11 * .. Array Arguments ..
12 COMPLEX A( LDA, * ), B( LDB, * ), TAU( * ),
13 $ WORK( LWORK )
14 * ..
15 *
16 * Purpose
17 * =======
18 *
19 * Compute a minimum-norm solution
20 * min || A*X - B ||
21 * using the RQ factorization
22 * A = R*Q
23 * computed by CGERQF.
24 *
25 * Arguments
26 * =========
27 *
28 * M (input) INTEGER
29 * The number of rows of the matrix A. M >= 0.
30 *
31 * N (input) INTEGER
32 * The number of columns of the matrix A. N >= M >= 0.
33 *
34 * NRHS (input) INTEGER
35 * The number of columns of B. NRHS >= 0.
36 *
37 * A (input) COMPLEX array, dimension (LDA,N)
38 * Details of the RQ factorization of the original matrix A as
39 * returned by CGERQF.
40 *
41 * LDA (input) INTEGER
42 * The leading dimension of the array A. LDA >= M.
43 *
44 * TAU (input) COMPLEX array, dimension (M)
45 * Details of the orthogonal matrix Q.
46 *
47 * B (input/output) COMPLEX array, dimension (LDB,NRHS)
48 * On entry, the right hand side vectors for the linear system.
49 * On exit, the solution vectors X. Each solution vector
50 * is contained in rows 1:N of a column of B.
51 *
52 * LDB (input) INTEGER
53 * The leading dimension of the array B. LDB >= max(1,N).
54 *
55 * WORK (workspace) COMPLEX array, dimension (LWORK)
56 *
57 * LWORK (input) INTEGER
58 * The length of the array WORK. LWORK must be at least NRHS,
59 * and should be at least NRHS*NB, where NB is the block size
60 * for this environment.
61 *
62 * INFO (output) INTEGER
63 * = 0: successful exit
64 * < 0: if INFO = -i, the i-th argument had an illegal value
65 *
66 * =====================================================================
67 *
68 * .. Parameters ..
69 COMPLEX CZERO, CONE
70 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
71 $ CONE = ( 1.0E+0, 0.0E+0 ) )
72 * ..
73 * .. External Subroutines ..
74 EXTERNAL CLASET, CTRSM, CUNMRQ, XERBLA
75 * ..
76 * .. Intrinsic Functions ..
77 INTRINSIC MAX
78 * ..
79 * .. Executable Statements ..
80 *
81 * Test the input parameters.
82 *
83 INFO = 0
84 IF( M.LT.0 ) THEN
85 INFO = -1
86 ELSE IF( N.LT.0 .OR. M.GT.N ) THEN
87 INFO = -2
88 ELSE IF( NRHS.LT.0 ) THEN
89 INFO = -3
90 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
91 INFO = -5
92 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
93 INFO = -8
94 ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
95 $ THEN
96 INFO = -10
97 END IF
98 IF( INFO.NE.0 ) THEN
99 CALL XERBLA( 'CGERQS', -INFO )
100 RETURN
101 END IF
102 *
103 * Quick return if possible
104 *
105 IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
106 $ RETURN
107 *
108 * Solve R*X = B(n-m+1:n,:)
109 *
110 CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', M, NRHS,
111 $ CONE, A( 1, N-M+1 ), LDA, B( N-M+1, 1 ), LDB )
112 *
113 * Set B(1:n-m,:) to zero
114 *
115 CALL CLASET( 'Full', N-M, NRHS, CZERO, CZERO, B, LDB )
116 *
117 * B := Q' * B
118 *
119 CALL CUNMRQ( 'Left', 'Conjugate transpose', N, NRHS, M, A, LDA,
120 $ TAU, B, LDB, WORK, LWORK, INFO )
121 *
122 RETURN
123 *
124 * End of CGERQS
125 *
126 END
2 $ INFO )
3 *
4 * -- LAPACK routine (version 3.1) --
5 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
6 * November 2006
7 *
8 * .. Scalar Arguments ..
9 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
10 * ..
11 * .. Array Arguments ..
12 COMPLEX A( LDA, * ), B( LDB, * ), TAU( * ),
13 $ WORK( LWORK )
14 * ..
15 *
16 * Purpose
17 * =======
18 *
19 * Compute a minimum-norm solution
20 * min || A*X - B ||
21 * using the RQ factorization
22 * A = R*Q
23 * computed by CGERQF.
24 *
25 * Arguments
26 * =========
27 *
28 * M (input) INTEGER
29 * The number of rows of the matrix A. M >= 0.
30 *
31 * N (input) INTEGER
32 * The number of columns of the matrix A. N >= M >= 0.
33 *
34 * NRHS (input) INTEGER
35 * The number of columns of B. NRHS >= 0.
36 *
37 * A (input) COMPLEX array, dimension (LDA,N)
38 * Details of the RQ factorization of the original matrix A as
39 * returned by CGERQF.
40 *
41 * LDA (input) INTEGER
42 * The leading dimension of the array A. LDA >= M.
43 *
44 * TAU (input) COMPLEX array, dimension (M)
45 * Details of the orthogonal matrix Q.
46 *
47 * B (input/output) COMPLEX array, dimension (LDB,NRHS)
48 * On entry, the right hand side vectors for the linear system.
49 * On exit, the solution vectors X. Each solution vector
50 * is contained in rows 1:N of a column of B.
51 *
52 * LDB (input) INTEGER
53 * The leading dimension of the array B. LDB >= max(1,N).
54 *
55 * WORK (workspace) COMPLEX array, dimension (LWORK)
56 *
57 * LWORK (input) INTEGER
58 * The length of the array WORK. LWORK must be at least NRHS,
59 * and should be at least NRHS*NB, where NB is the block size
60 * for this environment.
61 *
62 * INFO (output) INTEGER
63 * = 0: successful exit
64 * < 0: if INFO = -i, the i-th argument had an illegal value
65 *
66 * =====================================================================
67 *
68 * .. Parameters ..
69 COMPLEX CZERO, CONE
70 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
71 $ CONE = ( 1.0E+0, 0.0E+0 ) )
72 * ..
73 * .. External Subroutines ..
74 EXTERNAL CLASET, CTRSM, CUNMRQ, XERBLA
75 * ..
76 * .. Intrinsic Functions ..
77 INTRINSIC MAX
78 * ..
79 * .. Executable Statements ..
80 *
81 * Test the input parameters.
82 *
83 INFO = 0
84 IF( M.LT.0 ) THEN
85 INFO = -1
86 ELSE IF( N.LT.0 .OR. M.GT.N ) THEN
87 INFO = -2
88 ELSE IF( NRHS.LT.0 ) THEN
89 INFO = -3
90 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
91 INFO = -5
92 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
93 INFO = -8
94 ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
95 $ THEN
96 INFO = -10
97 END IF
98 IF( INFO.NE.0 ) THEN
99 CALL XERBLA( 'CGERQS', -INFO )
100 RETURN
101 END IF
102 *
103 * Quick return if possible
104 *
105 IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
106 $ RETURN
107 *
108 * Solve R*X = B(n-m+1:n,:)
109 *
110 CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', M, NRHS,
111 $ CONE, A( 1, N-M+1 ), LDA, B( N-M+1, 1 ), LDB )
112 *
113 * Set B(1:n-m,:) to zero
114 *
115 CALL CLASET( 'Full', N-M, NRHS, CZERO, CZERO, B, LDB )
116 *
117 * B := Q' * B
118 *
119 CALL CUNMRQ( 'Left', 'Conjugate transpose', N, NRHS, M, A, LDA,
120 $ TAU, B, LDB, WORK, LWORK, INFO )
121 *
122 RETURN
123 *
124 * End of CGERQS
125 *
126 END