1       SUBROUTINE CHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  2      $                   RWORK, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            LDA, LDAFAC, LDC, N
 11       REAL               RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IPIV( * )
 15       REAL               RWORK( * )
 16       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  CHET01 reconstructs a Hermitian indefinite matrix A from its
 23 *  block L*D*L' or U*D*U' factorization and computes the residual
 24 *     norm( C - A ) / ( N * norm(A) * EPS ),
 25 *  where C is the reconstructed matrix, EPS is the machine epsilon,
 26 *  L' is the conjugate transpose of L, and U' is the conjugate transpose
 27 *  of U.
 28 *
 29 *  Arguments
 30 *  ==========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          Specifies whether the upper or lower triangular part of the
 34 *          Hermitian matrix A is stored:
 35 *          = 'U':  Upper triangular
 36 *          = 'L':  Lower triangular
 37 *
 38 *  N       (input) INTEGER
 39 *          The number of rows and columns of the matrix A.  N >= 0.
 40 *
 41 *  A       (input) COMPLEX array, dimension (LDA,N)
 42 *          The original Hermitian matrix A.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A.  LDA >= max(1,N)
 46 *
 47 *  AFAC    (input) COMPLEX array, dimension (LDAFAC,N)
 48 *          The factored form of the matrix A.  AFAC contains the block
 49 *          diagonal matrix D and the multipliers used to obtain the
 50 *          factor L or U from the block L*D*L' or U*D*U' factorization
 51 *          as computed by CHETRF.
 52 *
 53 *  LDAFAC  (input) INTEGER
 54 *          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 55 *
 56 *  IPIV    (input) INTEGER array, dimension (N)
 57 *          The pivot indices from CHETRF.
 58 *
 59 *  C       (workspace) COMPLEX array, dimension (LDC,N)
 60 *
 61 *  LDC     (integer) INTEGER
 62 *          The leading dimension of the array C.  LDC >= max(1,N).
 63 *
 64 *  RWORK   (workspace) REAL array, dimension (N)
 65 *
 66 *  RESID   (output) REAL
 67 *          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 68 *          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 69 *
 70 *  =====================================================================
 71 *
 72 *     .. Parameters ..
 73       REAL               ZERO, ONE
 74       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 75       COMPLEX            CZERO, CONE
 76       PARAMETER          ( CZERO = ( 0.0E+00.0E+0 ),
 77      $                   CONE = ( 1.0E+00.0E+0 ) )
 78 *     ..
 79 *     .. Local Scalars ..
 80       INTEGER            I, INFO, J
 81       REAL               ANORM, EPS
 82 *     ..
 83 *     .. External Functions ..
 84       LOGICAL            LSAME
 85       REAL               CLANHE, SLAMCH
 86       EXTERNAL           LSAME, CLANHE, SLAMCH
 87 *     ..
 88 *     .. External Subroutines ..
 89       EXTERNAL           CLAVHE, CLASET
 90 *     ..
 91 *     .. Intrinsic Functions ..
 92       INTRINSIC          AIMAG, REAL
 93 *     ..
 94 *     .. Executable Statements ..
 95 *
 96 *     Quick exit if N = 0.
 97 *
 98       IF( N.LE.0 ) THEN
 99          RESID = ZERO
100          RETURN
101       END IF
102 *
103 *     Determine EPS and the norm of A.
104 *
105       EPS = SLAMCH( 'Epsilon' )
106       ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
107 *
108 *     Check the imaginary parts of the diagonal elements and return with
109 *     an error code if any are nonzero.
110 *
111       DO 10 J = 1, N
112          IFAIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
113             RESID = ONE / EPS
114             RETURN
115          END IF
116    10 CONTINUE
117 *
118 *     Initialize C to the identity matrix.
119 *
120       CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
121 *
122 *     Call CLAVHE to form the product D * U' (or D * L' ).
123 *
124       CALL CLAVHE( UPLO, 'Conjugate''Non-unit', N, N, AFAC, LDAFAC,
125      $             IPIV, C, LDC, INFO )
126 *
127 *     Call CLAVHE again to multiply by U (or L ).
128 *
129       CALL CLAVHE( UPLO, 'No transpose''Unit', N, N, AFAC, LDAFAC,
130      $             IPIV, C, LDC, INFO )
131 *
132 *     Compute the difference  C - A .
133 *
134       IF( LSAME( UPLO, 'U' ) ) THEN
135          DO 30 J = 1, N
136             DO 20 I = 1, J - 1
137                C( I, J ) = C( I, J ) - A( I, J )
138    20       CONTINUE
139             C( J, J ) = C( J, J ) - REAL( A( J, J ) )
140    30    CONTINUE
141       ELSE
142          DO 50 J = 1, N
143             C( J, J ) = C( J, J ) - REAL( A( J, J ) )
144             DO 40 I = J + 1, N
145                C( I, J ) = C( I, J ) - A( I, J )
146    40       CONTINUE
147    50    CONTINUE
148       END IF
149 *
150 *     Compute norm( C - A ) / ( N * norm(A) * EPS )
151 *
152       RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
153 *
154       IF( ANORM.LE.ZERO ) THEN
155          IF( RESID.NE.ZERO )
156      $      RESID = ONE / EPS
157       ELSE
158          RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
159       END IF
160 *
161       RETURN
162 *
163 *     End of CHET01
164 *
165       END