1       SUBROUTINE CPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
  2      $                   FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            LDB, LDX, LDXACT, N, NRHS
 10 *     ..
 11 *     .. Array Arguments ..
 12       REAL               BERR( * ), D( * ), FERR( * ), RESLTS( * )
 13       COMPLEX            B( LDB, * ), E( * ), X( LDX, * ),
 14      $                   XACT( LDXACT, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  CPTT05 tests the error bounds from iterative refinement for the
 21 *  computed solution to a system of equations A*X = B, where A is a
 22 *  Hermitian tridiagonal matrix of order n.
 23 *
 24 *  RESLTS(1) = test of the error bound
 25 *            = norm(X - XACT) / ( norm(X) * FERR )
 26 *
 27 *  A large value is returned if this ratio is not less than one.
 28 *
 29 *  RESLTS(2) = residual from the iterative refinement routine
 30 *            = the maximum of BERR / ( NZ*EPS + (*) ), where
 31 *              (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 32 *              and NZ = max. number of nonzeros in any row of A, plus 1
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  N       (input) INTEGER
 38 *          The number of rows of the matrices X, B, and XACT, and the
 39 *          order of the matrix A.  N >= 0.
 40 *
 41 *  NRHS    (input) INTEGER
 42 *          The number of columns of the matrices X, B, and XACT.
 43 *          NRHS >= 0.
 44 *
 45 *  D       (input) REAL array, dimension (N)
 46 *          The n diagonal elements of the tridiagonal matrix A.
 47 *
 48 *  E       (input) COMPLEX array, dimension (N-1)
 49 *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 50 *
 51 *  B       (input) COMPLEX array, dimension (LDB,NRHS)
 52 *          The right hand side vectors for the system of linear
 53 *          equations.
 54 *
 55 *  LDB     (input) INTEGER
 56 *          The leading dimension of the array B.  LDB >= max(1,N).
 57 *
 58 *  X       (input) COMPLEX array, dimension (LDX,NRHS)
 59 *          The computed solution vectors.  Each vector is stored as a
 60 *          column of the matrix X.
 61 *
 62 *  LDX     (input) INTEGER
 63 *          The leading dimension of the array X.  LDX >= max(1,N).
 64 *
 65 *  XACT    (input) COMPLEX array, dimension (LDX,NRHS)
 66 *          The exact solution vectors.  Each vector is stored as a
 67 *          column of the matrix XACT.
 68 *
 69 *  LDXACT  (input) INTEGER
 70 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 71 *
 72 *  FERR    (input) REAL array, dimension (NRHS)
 73 *          The estimated forward error bounds for each solution vector
 74 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
 75 *          of the largest entry in (X - XTRUE) divided by the magnitude
 76 *          of the largest entry in X.
 77 *
 78 *  BERR    (input) REAL array, dimension (NRHS)
 79 *          The componentwise relative backward error of each solution
 80 *          vector (i.e., the smallest relative change in any entry of A
 81 *          or B that makes X an exact solution).
 82 *
 83 *  RESLTS  (output) REAL array, dimension (2)
 84 *          The maximum over the NRHS solution vectors of the ratios:
 85 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 86 *          RESLTS(2) = BERR / ( NZ*EPS + (*) )
 87 *
 88 *  =====================================================================
 89 *
 90 *     .. Parameters ..
 91       REAL               ZERO, ONE
 92       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 93 *     ..
 94 *     .. Local Scalars ..
 95       INTEGER            I, IMAX, J, K, NZ
 96       REAL               AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
 97       COMPLEX            ZDUM
 98 *     ..
 99 *     .. External Functions ..
100       INTEGER            ICAMAX
101       REAL               SLAMCH
102       EXTERNAL           ICAMAX, SLAMCH
103 *     ..
104 *     .. Intrinsic Functions ..
105       INTRINSIC          ABSAIMAGMAXMIN, REAL
106 *     ..
107 *     .. Statement Functions ..
108       REAL               CABS1
109 *     ..
110 *     .. Statement Function definitions ..
111       CABS1( ZDUM ) = ABSREAL( ZDUM ) ) + ABSAIMAG( ZDUM ) )
112 *     ..
113 *     .. Executable Statements ..
114 *
115 *     Quick exit if N = 0 or NRHS = 0.
116 *
117       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
118          RESLTS( 1 ) = ZERO
119          RESLTS( 2 ) = ZERO
120          RETURN
121       END IF
122 *
123       EPS = SLAMCH( 'Epsilon' )
124       UNFL = SLAMCH( 'Safe minimum' )
125       OVFL = ONE / UNFL
126       NZ = 4
127 *
128 *     Test 1:  Compute the maximum of
129 *        norm(X - XACT) / ( norm(X) * FERR )
130 *     over all the vectors X and XACT using the infinity-norm.
131 *
132       ERRBND = ZERO
133       DO 30 J = 1, NRHS
134          IMAX = ICAMAX( N, X( 1, J ), 1 )
135          XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
136          DIFF = ZERO
137          DO 10 I = 1, N
138             DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
139    10    CONTINUE
140 *
141          IF( XNORM.GT.ONE ) THEN
142             GO TO 20
143          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
144             GO TO 20
145          ELSE
146             ERRBND = ONE / EPS
147             GO TO 30
148          END IF
149 *
150    20    CONTINUE
151          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
152             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
153          ELSE
154             ERRBND = ONE / EPS
155          END IF
156    30 CONTINUE
157       RESLTS( 1 ) = ERRBND
158 *
159 *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
160 *     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
161 *
162       DO 50 K = 1, NRHS
163          IF( N.EQ.1 ) THEN
164             AXBI = CABS1( B( 1, K ) ) + CABS1( D( 1 )*X( 1, K ) )
165          ELSE
166             AXBI = CABS1( B( 1, K ) ) + CABS1( D( 1 )*X( 1, K ) ) +
167      $             CABS1( E( 1 ) )*CABS1( X( 2, K ) )
168             DO 40 I = 2, N - 1
169                TMP = CABS1( B( I, K ) ) + CABS1( E( I-1 ) )*
170      $               CABS1( X( I-1, K ) ) + CABS1( D( I )*X( I, K ) ) +
171      $               CABS1( E( I ) )*CABS1( X( I+1, K ) )
172                AXBI = MIN( AXBI, TMP )
173    40       CONTINUE
174             TMP = CABS1( B( N, K ) ) + CABS1( E( N-1 ) )*
175      $            CABS1( X( N-1, K ) ) + CABS1( D( N )*X( N, K ) )
176             AXBI = MIN( AXBI, TMP )
177          END IF
178          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
179          IF( K.EQ.1 ) THEN
180             RESLTS( 2 ) = TMP
181          ELSE
182             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
183          END IF
184    50 CONTINUE
185 *
186       RETURN
187 *
188 *     End of CPTT05
189 *
190       END