1       SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
  2      $                   SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
  3      $                   RESID )
  4 *
  5 *  -- LAPACK test routine (version 3.1) --
  6 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, TRANS, UPLO
 11       INTEGER            KD, LDAB, LDB, LDX, N, NRHS
 12       REAL               RESID, SCALE, TSCAL
 13 *     ..
 14 *     .. Array Arguments ..
 15       REAL               CNORM( * )
 16       COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
 17      $                   X( LDX, * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  CTBT03 computes the residual for the solution to a scaled triangular
 24 *  system of equations  A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b
 25 *  when A is a triangular band matrix.  Here A**T  denotes the transpose
 26 *  of A, A**H denotes the conjugate transpose of A, s is a scalar, and
 27 *  x and b are N by NRHS matrices.  The test ratio is the maximum over
 28 *  the number of right hand sides of
 29 *     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 30 *  where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  UPLO    (input) CHARACTER*1
 36 *          Specifies whether the matrix A is upper or lower triangular.
 37 *          = 'U':  Upper triangular
 38 *          = 'L':  Lower triangular
 39 *
 40 *  TRANS   (input) CHARACTER*1
 41 *          Specifies the operation applied to A.
 42 *          = 'N':  A *x = s*b     (No transpose)
 43 *          = 'T':  A**T *x = s*b  (Transpose)
 44 *          = 'C':  A**H *x = s*b  (Conjugate transpose)
 45 *
 46 *  DIAG    (input) CHARACTER*1
 47 *          Specifies whether or not the matrix A is unit triangular.
 48 *          = 'N':  Non-unit triangular
 49 *          = 'U':  Unit triangular
 50 *
 51 *  N       (input) INTEGER
 52 *          The order of the matrix A.  N >= 0.
 53 *
 54 *  KD      (input) INTEGER
 55 *          The number of superdiagonals or subdiagonals of the
 56 *          triangular band matrix A.  KD >= 0.
 57 *
 58 *  NRHS    (input) INTEGER
 59 *          The number of right hand sides, i.e., the number of columns
 60 *          of the matrices X and B.  NRHS >= 0.
 61 *
 62 *  AB      (input) COMPLEX array, dimension (LDAB,N)
 63 *          The upper or lower triangular band matrix A, stored in the
 64 *          first kd+1 rows of the array. The j-th column of A is stored
 65 *          in the j-th column of the array AB as follows:
 66 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 67 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 68 *
 69 *  LDAB    (input) INTEGER
 70 *          The leading dimension of the array AB.  LDAB >= KD+1.
 71 *
 72 *  SCALE   (input) REAL
 73 *          The scaling factor s used in solving the triangular system.
 74 *
 75 *  CNORM   (input) REAL array, dimension (N)
 76 *          The 1-norms of the columns of A, not counting the diagonal.
 77 *
 78 *  TSCAL   (input) REAL
 79 *          The scaling factor used in computing the 1-norms in CNORM.
 80 *          CNORM actually contains the column norms of TSCAL*A.
 81 *
 82 *  X       (input) COMPLEX array, dimension (LDX,NRHS)
 83 *          The computed solution vectors for the system of linear
 84 *          equations.
 85 *
 86 *  LDX     (input) INTEGER
 87 *          The leading dimension of the array X.  LDX >= max(1,N).
 88 *
 89 *  B       (input) COMPLEX array, dimension (LDB,NRHS)
 90 *          The right hand side vectors for the system of linear
 91 *          equations.
 92 *
 93 *  LDB     (input) INTEGER
 94 *          The leading dimension of the array B.  LDB >= max(1,N).
 95 *
 96 *  WORK    (workspace) COMPLEX array, dimension (N)
 97 *
 98 *  RESID   (output) REAL
 99 *          The maximum over the number of right hand sides of
100 *          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
101 *
102 *  =====================================================================
103 *
104 *
105 *     .. Parameters ..
106       REAL               ONE, ZERO
107       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
108 *     ..
109 *     .. Local Scalars ..
110       INTEGER            IX, J
111       REAL               EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
112 *     ..
113 *     .. External Functions ..
114       LOGICAL            LSAME
115       INTEGER            ICAMAX
116       REAL               SLAMCH
117       EXTERNAL           LSAME, ICAMAX, SLAMCH
118 *     ..
119 *     .. External Subroutines ..
120       EXTERNAL           CAXPY, CCOPY, CSSCAL, CTBMV
121 *     ..
122 *     .. Intrinsic Functions ..
123       INTRINSIC          ABSCMPLXMAX, REAL
124 *     ..
125 *     .. Executable Statements ..
126 *
127 *     Quick exit if N = 0
128 *
129       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
130          RESID = ZERO
131          RETURN
132       END IF
133       EPS = SLAMCH( 'Epsilon' )
134       SMLNUM = SLAMCH( 'Safe minimum' )
135 *
136 *     Compute the norm of the triangular matrix A using the column
137 *     norms already computed by CLATBS.
138 *
139       TNORM = ZERO
140       IF( LSAME( DIAG, 'N' ) ) THEN
141          IF( LSAME( UPLO, 'U' ) ) THEN
142             DO 10 J = 1, N
143                TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+
144      $                 CNORM( J ) )
145    10       CONTINUE
146          ELSE
147             DO 20 J = 1, N
148                TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) )
149    20       CONTINUE
150          END IF
151       ELSE
152          DO 30 J = 1, N
153             TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
154    30    CONTINUE
155       END IF
156 *
157 *     Compute the maximum over the number of right hand sides of
158 *        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
159 *
160       RESID = ZERO
161       DO 40 J = 1, NRHS
162          CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
163          IX = ICAMAX( N, WORK, 1 )
164          XNORM = MAX( ONE, ABS( X( IX, J ) ) )
165          XSCAL = ( ONE / XNORM ) / REAL( KD+1 )
166          CALL CSSCAL( N, XSCAL, WORK, 1 )
167          CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
168          CALL CAXPY( N, CMPLX-SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
169          IX = ICAMAX( N, WORK, 1 )
170          ERR = TSCAL*ABS( WORK( IX ) )
171          IX = ICAMAX( N, X( 1, J ), 1 )
172          XNORM = ABS( X( IX, J ) )
173          IF( ERR*SMLNUM.LE.XNORM ) THEN
174             IF( XNORM.GT.ZERO )
175      $         ERR = ERR / XNORM
176          ELSE
177             IF( ERR.GT.ZERO )
178      $         ERR = ONE / EPS
179          END IF
180          IF( ERR*SMLNUM.LE.TNORM ) THEN
181             IF( TNORM.GT.ZERO )
182      $         ERR = ERR / TNORM
183          ELSE
184             IF( ERR.GT.ZERO )
185      $         ERR = ONE / EPS
186          END IF
187          RESID = MAX( RESID, ERR )
188    40 CONTINUE
189 *
190       RETURN
191 *
192 *     End of CTBT03
193 *
194       END