1       SUBROUTINE CTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  2      $                   LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, TRANS, UPLO
 10       INTEGER            KD, LDAB, LDB, LDX, LDXACT, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       REAL               BERR( * ), FERR( * ), RESLTS( * )
 14       COMPLEX            AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
 15      $                   XACT( LDXACT, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  CTBT05 tests the error bounds from iterative refinement for the
 22 *  computed solution to a system of equations A*X = B, where A is a
 23 *  triangular band matrix.
 24 *
 25 *  RESLTS(1) = test of the error bound
 26 *            = norm(X - XACT) / ( norm(X) * FERR )
 27 *
 28 *  A large value is returned if this ratio is not less than one.
 29 *
 30 *  RESLTS(2) = residual from the iterative refinement routine
 31 *            = the maximum of BERR / ( NZ*EPS + (*) ), where
 32 *              (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 33 *              and NZ = max. number of nonzeros in any row of A, plus 1
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  UPLO    (input) CHARACTER*1
 39 *          Specifies whether the matrix A is upper or lower triangular.
 40 *          = 'U':  Upper triangular
 41 *          = 'L':  Lower triangular
 42 *
 43 *  TRANS   (input) CHARACTER*1
 44 *          Specifies the form of the system of equations.
 45 *          = 'N':  A * X = B  (No transpose)
 46 *          = 'T':  A'* X = B  (Transpose)
 47 *          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 48 *
 49 *  DIAG    (input) CHARACTER*1
 50 *          Specifies whether or not the matrix A is unit triangular.
 51 *          = 'N':  Non-unit triangular
 52 *          = 'U':  Unit triangular
 53 *
 54 *  N       (input) INTEGER
 55 *          The number of rows of the matrices X, B, and XACT, and the
 56 *          order of the matrix A.  N >= 0.
 57 *
 58 *  KD      (input) INTEGER
 59 *          The number of super-diagonals of the matrix A if UPLO = 'U',
 60 *          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 61 *
 62 *  NRHS    (input) INTEGER
 63 *          The number of columns of the matrices X, B, and XACT.
 64 *          NRHS >= 0.
 65 *
 66 *  AB      (input) COMPLEX array, dimension (LDAB,N)
 67 *          The upper or lower triangular band matrix A, stored in the
 68 *          first kd+1 rows of the array. The j-th column of A is stored
 69 *          in the j-th column of the array AB as follows:
 70 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 71 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 72 *          If DIAG = 'U', the diagonal elements of A are not referenced
 73 *          and are assumed to be 1.
 74 *
 75 *  LDAB    (input) INTEGER
 76 *          The leading dimension of the array AB.  LDAB >= KD+1.
 77 *
 78 *  B       (input) COMPLEX array, dimension (LDB,NRHS)
 79 *          The right hand side vectors for the system of linear
 80 *          equations.
 81 *
 82 *  LDB     (input) INTEGER
 83 *          The leading dimension of the array B.  LDB >= max(1,N).
 84 *
 85 *  X       (input) COMPLEX array, dimension (LDX,NRHS)
 86 *          The computed solution vectors.  Each vector is stored as a
 87 *          column of the matrix X.
 88 *
 89 *  LDX     (input) INTEGER
 90 *          The leading dimension of the array X.  LDX >= max(1,N).
 91 *
 92 *  XACT    (input) COMPLEX array, dimension (LDX,NRHS)
 93 *          The exact solution vectors.  Each vector is stored as a
 94 *          column of the matrix XACT.
 95 *
 96 *  LDXACT  (input) INTEGER
 97 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 98 *
 99 *  FERR    (input) REAL array, dimension (NRHS)
100 *          The estimated forward error bounds for each solution vector
101 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
102 *          of the largest entry in (X - XTRUE) divided by the magnitude
103 *          of the largest entry in X.
104 *
105 *  BERR    (input) REAL array, dimension (NRHS)
106 *          The componentwise relative backward error of each solution
107 *          vector (i.e., the smallest relative change in any entry of A
108 *          or B that makes X an exact solution).
109 *
110 *  RESLTS  (output) REAL array, dimension (2)
111 *          The maximum over the NRHS solution vectors of the ratios:
112 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
113 *          RESLTS(2) = BERR / ( NZ*EPS + (*) )
114 *
115 *  =====================================================================
116 *
117 *     .. Parameters ..
118       REAL               ZERO, ONE
119       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
120 *     ..
121 *     .. Local Scalars ..
122       LOGICAL            NOTRAN, UNIT, UPPER
123       INTEGER            I, IFU, IMAX, J, K, NZ
124       REAL               AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
125       COMPLEX            ZDUM
126 *     ..
127 *     .. External Functions ..
128       LOGICAL            LSAME
129       INTEGER            ICAMAX
130       REAL               SLAMCH
131       EXTERNAL           LSAME, ICAMAX, SLAMCH
132 *     ..
133 *     .. Intrinsic Functions ..
134       INTRINSIC          ABSAIMAGMAXMIN, REAL
135 *     ..
136 *     .. Statement Functions ..
137       REAL               CABS1
138 *     ..
139 *     .. Statement Function definitions ..
140       CABS1( ZDUM ) = ABSREAL( ZDUM ) ) + ABSAIMAG( ZDUM ) )
141 *     ..
142 *     .. Executable Statements ..
143 *
144 *     Quick exit if N = 0 or NRHS = 0.
145 *
146       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
147          RESLTS( 1 ) = ZERO
148          RESLTS( 2 ) = ZERO
149          RETURN
150       END IF
151 *
152       EPS = SLAMCH( 'Epsilon' )
153       UNFL = SLAMCH( 'Safe minimum' )
154       OVFL = ONE / UNFL
155       UPPER = LSAME( UPLO, 'U' )
156       NOTRAN = LSAME( TRANS, 'N' )
157       UNIT = LSAME( DIAG, 'U' )
158       NZ = MIN( KD, N-1 ) + 1
159 *
160 *     Test 1:  Compute the maximum of
161 *        norm(X - XACT) / ( norm(X) * FERR )
162 *     over all the vectors X and XACT using the infinity-norm.
163 *
164       ERRBND = ZERO
165       DO 30 J = 1, NRHS
166          IMAX = ICAMAX( N, X( 1, J ), 1 )
167          XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
168          DIFF = ZERO
169          DO 10 I = 1, N
170             DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
171    10    CONTINUE
172 *
173          IF( XNORM.GT.ONE ) THEN
174             GO TO 20
175          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
176             GO TO 20
177          ELSE
178             ERRBND = ONE / EPS
179             GO TO 30
180          END IF
181 *
182    20    CONTINUE
183          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
184             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
185          ELSE
186             ERRBND = ONE / EPS
187          END IF
188    30 CONTINUE
189       RESLTS( 1 ) = ERRBND
190 *
191 *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
192 *     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
193 *
194       IFU = 0
195       IFUNIT )
196      $   IFU = 1
197       DO 90 K = 1, NRHS
198          DO 80 I = 1, N
199             TMP = CABS1( B( I, K ) )
200             IF( UPPER ) THEN
201                IF.NOT.NOTRAN ) THEN
202                   DO 40 J = MAX( I-KD, 1 ), I - IFU
203                      TMP = TMP + CABS1( AB( KD+1-I+J, I ) )*
204      $                     CABS1( X( J, K ) )
205    40             CONTINUE
206                   IFUNIT )
207      $               TMP = TMP + CABS1( X( I, K ) )
208                ELSE
209                   IFUNIT )
210      $               TMP = TMP + CABS1( X( I, K ) )
211                   DO 50 J = I + IFU, MIN( I+KD, N )
212                      TMP = TMP + CABS1( AB( KD+1+I-J, J ) )*
213      $                     CABS1( X( J, K ) )
214    50             CONTINUE
215                END IF
216             ELSE
217                IF( NOTRAN ) THEN
218                   DO 60 J = MAX( I-KD, 1 ), I - IFU
219                      TMP = TMP + CABS1( AB( 1+I-J, J ) )*
220      $                     CABS1( X( J, K ) )
221    60             CONTINUE
222                   IFUNIT )
223      $               TMP = TMP + CABS1( X( I, K ) )
224                ELSE
225                   IFUNIT )
226      $               TMP = TMP + CABS1( X( I, K ) )
227                   DO 70 J = I + IFU, MIN( I+KD, N )
228                      TMP = TMP + CABS1( AB( 1+J-I, I ) )*
229      $                     CABS1( X( J, K ) )
230    70             CONTINUE
231                END IF
232             END IF
233             IF( I.EQ.1 ) THEN
234                AXBI = TMP
235             ELSE
236                AXBI = MIN( AXBI, TMP )
237             END IF
238    80    CONTINUE
239          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
240          IF( K.EQ.1 ) THEN
241             RESLTS( 2 ) = TMP
242          ELSE
243             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
244          END IF
245    90 CONTINUE
246 *
247       RETURN
248 *
249 *     End of CTBT05
250 *
251       END