1       SUBROUTINE CTPT05( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
  2      $                   XACT, LDXACT, FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, TRANS, UPLO
 10       INTEGER            LDB, LDX, LDXACT, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       REAL               BERR( * ), FERR( * ), RESLTS( * )
 14       COMPLEX            AP( * ), B( LDB, * ), X( LDX, * ),
 15      $                   XACT( LDXACT, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  CTPT05 tests the error bounds from iterative refinement for the
 22 *  computed solution to a system of equations A*X = B, where A is a
 23 *  triangular matrix in packed storage format.
 24 *
 25 *  RESLTS(1) = test of the error bound
 26 *            = norm(X - XACT) / ( norm(X) * FERR )
 27 *
 28 *  A large value is returned if this ratio is not less than one.
 29 *
 30 *  RESLTS(2) = residual from the iterative refinement routine
 31 *            = the maximum of BERR / ( (n+1)*EPS + (*) ), where
 32 *              (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the matrix A is upper or lower triangular.
 39 *          = 'U':  Upper triangular
 40 *          = 'L':  Lower triangular
 41 *
 42 *  TRANS   (input) CHARACTER*1
 43 *          Specifies the form of the system of equations.
 44 *          = 'N':  A * X = B  (No transpose)
 45 *          = 'T':  A'* X = B  (Transpose)
 46 *          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 47 *
 48 *  DIAG    (input) CHARACTER*1
 49 *          Specifies whether or not the matrix A is unit triangular.
 50 *          = 'N':  Non-unit triangular
 51 *          = 'U':  Unit triangular
 52 *
 53 *  N       (input) INTEGER
 54 *          The number of rows of the matrices X, B, and XACT, and the
 55 *          order of the matrix A.  N >= 0.
 56 *
 57 *  NRHS    (input) INTEGER
 58 *          The number of columns of the matrices X, B, and XACT.
 59 *          NRHS >= 0.
 60 *
 61 *  AP      (input) COMPLEX array, dimension (N*(N+1)/2)
 62 *          The upper or lower triangular matrix A, packed columnwise in
 63 *          a linear array.  The j-th column of A is stored in the array
 64 *          AP as follows:
 65 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 66 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 67 *          If DIAG = 'U', the diagonal elements of A are not referenced
 68 *          and are assumed to be 1.
 69 *
 70 *  B       (input) COMPLEX array, dimension (LDB,NRHS)
 71 *          The right hand side vectors for the system of linear
 72 *          equations.
 73 *
 74 *  LDB     (input) INTEGER
 75 *          The leading dimension of the array B.  LDB >= max(1,N).
 76 *
 77 *  X       (input) COMPLEX array, dimension (LDX,NRHS)
 78 *          The computed solution vectors.  Each vector is stored as a
 79 *          column of the matrix X.
 80 *
 81 *  LDX     (input) INTEGER
 82 *          The leading dimension of the array X.  LDX >= max(1,N).
 83 *
 84 *  XACT    (input) COMPLEX array, dimension (LDX,NRHS)
 85 *          The exact solution vectors.  Each vector is stored as a
 86 *          column of the matrix XACT.
 87 *
 88 *  LDXACT  (input) INTEGER
 89 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 90 *
 91 *  FERR    (input) REAL array, dimension (NRHS)
 92 *          The estimated forward error bounds for each solution vector
 93 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
 94 *          of the largest entry in (X - XTRUE) divided by the magnitude
 95 *          of the largest entry in X.
 96 *
 97 *  BERR    (input) REAL array, dimension (NRHS)
 98 *          The componentwise relative backward error of each solution
 99 *          vector (i.e., the smallest relative change in any entry of A
100 *          or B that makes X an exact solution).
101 *
102 *  RESLTS  (output) REAL array, dimension (2)
103 *          The maximum over the NRHS solution vectors of the ratios:
104 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
105 *          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
106 *
107 *  =====================================================================
108 *
109 *     .. Parameters ..
110       REAL               ZERO, ONE
111       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
112 *     ..
113 *     .. Local Scalars ..
114       LOGICAL            NOTRAN, UNIT, UPPER
115       INTEGER            I, IFU, IMAX, J, JC, K
116       REAL               AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
117       COMPLEX            ZDUM
118 *     ..
119 *     .. External Functions ..
120       LOGICAL            LSAME
121       INTEGER            ICAMAX
122       REAL               SLAMCH
123       EXTERNAL           LSAME, ICAMAX, SLAMCH
124 *     ..
125 *     .. Intrinsic Functions ..
126       INTRINSIC          ABSAIMAGMAXMIN, REAL
127 *     ..
128 *     .. Statement Functions ..
129       REAL               CABS1
130 *     ..
131 *     .. Statement Function definitions ..
132       CABS1( ZDUM ) = ABSREAL( ZDUM ) ) + ABSAIMAG( ZDUM ) )
133 *     ..
134 *     .. Executable Statements ..
135 *
136 *     Quick exit if N = 0 or NRHS = 0.
137 *
138       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
139          RESLTS( 1 ) = ZERO
140          RESLTS( 2 ) = ZERO
141          RETURN
142       END IF
143 *
144       EPS = SLAMCH( 'Epsilon' )
145       UNFL = SLAMCH( 'Safe minimum' )
146       OVFL = ONE / UNFL
147       UPPER = LSAME( UPLO, 'U' )
148       NOTRAN = LSAME( TRANS, 'N' )
149       UNIT = LSAME( DIAG, 'U' )
150 *
151 *     Test 1:  Compute the maximum of
152 *        norm(X - XACT) / ( norm(X) * FERR )
153 *     over all the vectors X and XACT using the infinity-norm.
154 *
155       ERRBND = ZERO
156       DO 30 J = 1, NRHS
157          IMAX = ICAMAX( N, X( 1, J ), 1 )
158          XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
159          DIFF = ZERO
160          DO 10 I = 1, N
161             DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
162    10    CONTINUE
163 *
164          IF( XNORM.GT.ONE ) THEN
165             GO TO 20
166          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
167             GO TO 20
168          ELSE
169             ERRBND = ONE / EPS
170             GO TO 30
171          END IF
172 *
173    20    CONTINUE
174          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
175             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
176          ELSE
177             ERRBND = ONE / EPS
178          END IF
179    30 CONTINUE
180       RESLTS( 1 ) = ERRBND
181 *
182 *     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
183 *     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
184 *
185       IFU = 0
186       IFUNIT )
187      $   IFU = 1
188       DO 90 K = 1, NRHS
189          DO 80 I = 1, N
190             TMP = CABS1( B( I, K ) )
191             IF( UPPER ) THEN
192                JC = ( ( I-1 )*I ) / 2
193                IF.NOT.NOTRAN ) THEN
194                   DO 40 J = 1, I - IFU
195                      TMP = TMP + CABS1( AP( JC+J ) )*CABS1( X( J, K ) )
196    40             CONTINUE
197                   IFUNIT )
198      $               TMP = TMP + CABS1( X( I, K ) )
199                ELSE
200                   JC = JC + I
201                   IFUNIT ) THEN
202                      TMP = TMP + CABS1( X( I, K ) )
203                      JC = JC + I
204                   END IF
205                   DO 50 J = I + IFU, N
206                      TMP = TMP + CABS1( AP( JC ) )*CABS1( X( J, K ) )
207                      JC = JC + J
208    50             CONTINUE
209                END IF
210             ELSE
211                IF( NOTRAN ) THEN
212                   JC = I
213                   DO 60 J = 1, I - IFU
214                      TMP = TMP + CABS1( AP( JC ) )*CABS1( X( J, K ) )
215                      JC = JC + N - J
216    60             CONTINUE
217                   IFUNIT )
218      $               TMP = TMP + CABS1( X( I, K ) )
219                ELSE
220                   JC = ( I-1 )*( N-I ) + ( I*( I+1 ) ) / 2
221                   IFUNIT )
222      $               TMP = TMP + CABS1( X( I, K ) )
223                   DO 70 J = I + IFU, N
224                      TMP = TMP + CABS1( AP( JC+J-I ) )*
225      $                     CABS1( X( J, K ) )
226    70             CONTINUE
227                END IF
228             END IF
229             IF( I.EQ.1 ) THEN
230                AXBI = TMP
231             ELSE
232                AXBI = MIN( AXBI, TMP )
233             END IF
234    80    CONTINUE
235          TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
236      $         MAX( AXBI, ( N+1 )*UNFL ) )
237          IF( K.EQ.1 ) THEN
238             RESLTS( 2 ) = TMP
239          ELSE
240             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
241          END IF
242    90 CONTINUE
243 *
244       RETURN
245 *
246 *     End of CTPT05
247 *
248       END