1       SUBROUTINE CTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
  2      $                   RWORK, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, UPLO
 10       INTEGER            LDA, LDAINV, N
 11       REAL               RCOND, RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       REAL               RWORK( * )
 15       COMPLEX            A( LDA, * ), AINV( LDAINV, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  CTRT01 computes the residual for a triangular matrix A times its
 22 *  inverse:
 23 *     RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
 24 *  where EPS is the machine epsilon.
 25 *
 26 *  Arguments
 27 *  ==========
 28 *
 29 *  UPLO    (input) CHARACTER*1
 30 *          Specifies whether the matrix A is upper or lower triangular.
 31 *          = 'U':  Upper triangular
 32 *          = 'L':  Lower triangular
 33 *
 34 *  DIAG    (input) CHARACTER*1
 35 *          Specifies whether or not the matrix A is unit triangular.
 36 *          = 'N':  Non-unit triangular
 37 *          = 'U':  Unit triangular
 38 *
 39 *  N       (input) INTEGER
 40 *          The order of the matrix A.  N >= 0.
 41 *
 42 *  A       (input) COMPLEX array, dimension (LDA,N)
 43 *          The triangular matrix A.  If UPLO = 'U', the leading n by n
 44 *          upper triangular part of the array A contains the upper
 45 *          triangular matrix, and the strictly lower triangular part of
 46 *          A is not referenced.  If UPLO = 'L', the leading n by n lower
 47 *          triangular part of the array A contains the lower triangular
 48 *          matrix, and the strictly upper triangular part of A is not
 49 *          referenced.  If DIAG = 'U', the diagonal elements of A are
 50 *          also not referenced and are assumed to be 1.
 51 *
 52 *  LDA     (input) INTEGER
 53 *          The leading dimension of the array A.  LDA >= max(1,N).
 54 *
 55 *  AINV    (input) COMPLEX array, dimension (LDAINV,N)
 56 *          On entry, the (triangular) inverse of the matrix A, in the
 57 *          same storage format as A.
 58 *          On exit, the contents of AINV are destroyed.
 59 *
 60 *  LDAINV  (input) INTEGER
 61 *          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 62 *
 63 *  RCOND   (output) REAL
 64 *          The reciprocal condition number of A, computed as
 65 *          1/(norm(A) * norm(AINV)).
 66 *
 67 *  RWORK   (workspace) REAL array, dimension (N)
 68 *
 69 *  RESID   (output) REAL
 70 *          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
 71 *
 72 *  =====================================================================
 73 *
 74 *     .. Parameters ..
 75       REAL               ZERO, ONE
 76       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 77 *     ..
 78 *     .. Local Scalars ..
 79       INTEGER            J
 80       REAL               AINVNM, ANORM, EPS
 81 *     ..
 82 *     .. External Functions ..
 83       LOGICAL            LSAME
 84       REAL               CLANTR, SLAMCH
 85       EXTERNAL           LSAME, CLANTR, SLAMCH
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           CTRMV
 89 *     ..
 90 *     .. Intrinsic Functions ..
 91       INTRINSIC          REAL
 92 *     ..
 93 *     .. Executable Statements ..
 94 *
 95 *     Quick exit if N = 0
 96 *
 97       IF( N.LE.0 ) THEN
 98          RCOND = ONE
 99          RESID = ZERO
100          RETURN
101       END IF
102 *
103 *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
104 *
105       EPS = SLAMCH( 'Epsilon' )
106       ANORM = CLANTR( '1', UPLO, DIAG, N, N, A, LDA, RWORK )
107       AINVNM = CLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, RWORK )
108       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
109          RCOND = ZERO
110          RESID = ONE / EPS
111          RETURN
112       END IF
113       RCOND = ( ONE / ANORM ) / AINVNM
114 *
115 *     Set the diagonal of AINV to 1 if AINV has unit diagonal.
116 *
117       IF( LSAME( DIAG, 'U' ) ) THEN
118          DO 10 J = 1, N
119             AINV( J, J ) = ONE
120    10    CONTINUE
121       END IF
122 *
123 *     Compute A * AINV, overwriting AINV.
124 *
125       IF( LSAME( UPLO, 'U' ) ) THEN
126          DO 20 J = 1, N
127             CALL CTRMV( 'Upper''No transpose', DIAG, J, A, LDA,
128      $                  AINV( 1, J ), 1 )
129    20    CONTINUE
130       ELSE
131          DO 30 J = 1, N
132             CALL CTRMV( 'Lower''No transpose', DIAG, N-J+1, A( J, J ),
133      $                  LDA, AINV( J, J ), 1 )
134    30    CONTINUE
135       END IF
136 *
137 *     Subtract 1 from each diagonal element to form A*AINV - I.
138 *
139       DO 40 J = 1, N
140          AINV( J, J ) = AINV( J, J ) - ONE
141    40 CONTINUE
142 *
143 *     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
144 *
145       RESID = CLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, RWORK )
146 *
147       RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
148 *
149       RETURN
150 *
151 *     End of CTRT01
152 *
153       END