1       SUBROUTINE DCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
  2      $                   NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
  3      $                   X, XACT, WORK, RWORK, IWORK, NOUT )
  4 *
  5 *  -- LAPACK test routine (version 3.1) --
  6 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       LOGICAL            TSTERR
 11       INTEGER            LA, LAFAC, NM, NN, NNB, NNS, NOUT
 12       DOUBLE PRECISION   THRESH
 13 *     ..
 14 *     .. Array Arguments ..
 15       LOGICAL            DOTYPE( * )
 16       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
 17      $                   NVAL( * )
 18       DOUBLE PRECISION   A( * ), AFAC( * ), B( * ), RWORK( * ),
 19      $                   WORK( * ), X( * ), XACT( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  DCHKGB tests DGBTRF, -TRS, -RFS, and -CON
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
 31 *          The matrix types to be used for testing.  Matrices of type j
 32 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 33 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 34 *
 35 *  NM      (input) INTEGER
 36 *          The number of values of M contained in the vector MVAL.
 37 *
 38 *  MVAL    (input) INTEGER array, dimension (NM)
 39 *          The values of the matrix row dimension M.
 40 *
 41 *  NN      (input) INTEGER
 42 *          The number of values of N contained in the vector NVAL.
 43 *
 44 *  NVAL    (input) INTEGER array, dimension (NN)
 45 *          The values of the matrix column dimension N.
 46 *
 47 *  NNB     (input) INTEGER
 48 *          The number of values of NB contained in the vector NBVAL.
 49 *
 50 *  NBVAL   (input) INTEGER array, dimension (NNB)
 51 *          The values of the blocksize NB.
 52 *
 53 *  NNS     (input) INTEGER
 54 *          The number of values of NRHS contained in the vector NSVAL.
 55 *
 56 *  NSVAL   (input) INTEGER array, dimension (NNS)
 57 *          The values of the number of right hand sides NRHS.
 58 *
 59 *  THRESH  (input) DOUBLE PRECISION
 60 *          The threshold value for the test ratios.  A result is
 61 *          included in the output file if RESULT >= THRESH.  To have
 62 *          every test ratio printed, use THRESH = 0.
 63 *
 64 *  TSTERR  (input) LOGICAL
 65 *          Flag that indicates whether error exits are to be tested.
 66 *
 67 *  A       (workspace) DOUBLE PRECISION array, dimension (LA)
 68 *
 69 *  LA      (input) INTEGER
 70 *          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX
 71 *          where KLMAX is the largest entry in the local array KLVAL,
 72 *                KUMAX is the largest entry in the local array KUVAL and
 73 *                NMAX is the largest entry in the input array NVAL.
 74 *
 75 *  AFAC    (workspace) DOUBLE PRECISION array, dimension (LAFAC)
 76 *
 77 *  LAFAC   (input) INTEGER
 78 *          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX
 79 *          where KLMAX is the largest entry in the local array KLVAL,
 80 *                KUMAX is the largest entry in the local array KUVAL and
 81 *                NMAX is the largest entry in the input array NVAL.
 82 *
 83 *  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)
 84 *          where NSMAX is the largest entry in NSVAL.
 85 *
 86 *  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)
 87 *
 88 *  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)
 89 *
 90 *  WORK    (workspace) DOUBLE PRECISION array, dimension
 91 *                      (NMAX*max(3,NSMAX,NMAX))
 92 *
 93 *  RWORK   (workspace) DOUBLE PRECISION array, dimension
 94 *                      (max(NMAX,2*NSMAX))
 95 *
 96 *  IWORK   (workspace) INTEGER array, dimension (2*NMAX)
 97 *
 98 *  NOUT    (input) INTEGER
 99 *          The unit number for output.
100 *
101 *  =====================================================================
102 *
103 *     .. Parameters ..
104       DOUBLE PRECISION   ONE, ZERO
105       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
106       INTEGER            NTYPES, NTESTS
107       PARAMETER          ( NTYPES = 8, NTESTS = 7 )
108       INTEGER            NBW, NTRAN
109       PARAMETER          ( NBW = 4, NTRAN = 3 )
110 *     ..
111 *     .. Local Scalars ..
112       LOGICAL            TRFCON, ZEROT
113       CHARACTER          DIST, NORM, TRANS, TYPE, XTYPE
114       CHARACTER*3        PATH
115       INTEGER            I, I1, I2, IKL, IKU, IM, IMAT, IN, INB, INFO,
116      $                   IOFF, IRHS, ITRAN, IZERO, J, K, KL, KOFF, KU,
117      $                   LDA, LDAFAC, LDB, M, MODE, N, NB, NERRS, NFAIL,
118      $                   NIMAT, NKL, NKU, NRHS, NRUN
119       DOUBLE PRECISION   AINVNM, ANORM, ANORMI, ANORMO, CNDNUM, RCOND,
120      $                   RCONDC, RCONDI, RCONDO
121 *     ..
122 *     .. Local Arrays ..
123       CHARACTER          TRANSS( NTRAN )
124       INTEGER            ISEED( 4 ), ISEEDY( 4 ), KLVAL( NBW ),
125      $                   KUVAL( NBW )
126       DOUBLE PRECISION   RESULT( NTESTS )
127 *     ..
128 *     .. External Functions ..
129       DOUBLE PRECISION   DGET06, DLANGB, DLANGE
130       EXTERNAL           DGET06, DLANGB, DLANGE
131 *     ..
132 *     .. External Subroutines ..
133       EXTERNAL           ALAERH, ALAHD, ALASUM, DCOPY, DERRGE, DGBCON,
134      $                   DGBRFS, DGBT01, DGBT02, DGBT05, DGBTRF, DGBTRS,
135      $                   DGET04, DLACPY, DLARHS, DLASET, DLATB4, DLATMS,
136      $                   XLAENV
137 *     ..
138 *     .. Intrinsic Functions ..
139       INTRINSIC          MAXMIN
140 *     ..
141 *     .. Scalars in Common ..
142       LOGICAL            LERR, OK
143       CHARACTER*32       SRNAMT
144       INTEGER            INFOT, NUNIT
145 *     ..
146 *     .. Common blocks ..
147       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
148       COMMON             / SRNAMC / SRNAMT
149 *     ..
150 *     .. Data statements ..
151       DATA               ISEEDY / 1988198919901991 / ,
152      $                   TRANSS / 'N''T''C' /
153 *     ..
154 *     .. Executable Statements ..
155 *
156 *     Initialize constants and the random number seed.
157 *
158       PATH( 11 ) = 'Double precision'
159       PATH( 23 ) = 'GB'
160       NRUN = 0
161       NFAIL = 0
162       NERRS = 0
163       DO 10 I = 14
164          ISEED( I ) = ISEEDY( I )
165    10 CONTINUE
166 *
167 *     Test the error exits
168 *
169       IF( TSTERR )
170      $   CALL DERRGE( PATH, NOUT )
171       INFOT = 0
172       CALL XLAENV( 22 )
173 *
174 *     Initialize the first value for the lower and upper bandwidths.
175 *
176       KLVAL( 1 ) = 0
177       KUVAL( 1 ) = 0
178 *
179 *     Do for each value of M in MVAL
180 *
181       DO 160 IM = 1, NM
182          M = MVAL( IM )
183 *
184 *        Set values to use for the lower bandwidth.
185 *
186          KLVAL( 2 ) = M + ( M+1 ) / 4
187 *
188 *        KLVAL( 2 ) = MAX( M-1, 0 )
189 *
190          KLVAL( 3 ) = ( 3*M-1 ) / 4
191          KLVAL( 4 ) = ( M+1 ) / 4
192 *
193 *        Do for each value of N in NVAL
194 *
195          DO 150 IN = 1, NN
196             N = NVAL( IN )
197             XTYPE = 'N'
198 *
199 *           Set values to use for the upper bandwidth.
200 *
201             KUVAL( 2 ) = N + ( N+1 ) / 4
202 *
203 *           KUVAL( 2 ) = MAX( N-1, 0 )
204 *
205             KUVAL( 3 ) = ( 3*N-1 ) / 4
206             KUVAL( 4 ) = ( N+1 ) / 4
207 *
208 *           Set limits on the number of loop iterations.
209 *
210             NKL = MIN( M+14 )
211             IF( N.EQ.0 )
212      $         NKL = 2
213             NKU = MIN( N+14 )
214             IF( M.EQ.0 )
215      $         NKU = 2
216             NIMAT = NTYPES
217             IF( M.LE.0 .OR. N.LE.0 )
218      $         NIMAT = 1
219 *
220             DO 140 IKL = 1, NKL
221 *
222 *              Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This
223 *              order makes it easier to skip redundant values for small
224 *              values of M.
225 *
226                KL = KLVAL( IKL )
227                DO 130 IKU = 1, NKU
228 *
229 *                 Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This
230 *                 order makes it easier to skip redundant values for
231 *                 small values of N.
232 *
233                   KU = KUVAL( IKU )
234 *
235 *                 Check that A and AFAC are big enough to generate this
236 *                 matrix.
237 *
238                   LDA = KL + KU + 1
239                   LDAFAC = 2*KL + KU + 1
240                   IF( ( LDA*N ).GT.LA .OR. ( LDAFAC*N ).GT.LAFAC ) THEN
241                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
242      $                  CALL ALAHD( NOUT, PATH )
243                      IF( N*( KL+KU+1 ).GT.LA ) THEN
244                         WRITE( NOUT, FMT = 9999 )LA, M, N, KL, KU,
245      $                     N*( KL+KU+1 )
246                         NERRS = NERRS + 1
247                      END IF
248                      IF( N*2*KL+KU+1 ).GT.LAFAC ) THEN
249                         WRITE( NOUT, FMT = 9998 )LAFAC, M, N, KL, KU,
250      $                     N*2*KL+KU+1 )
251                         NERRS = NERRS + 1
252                      END IF
253                      GO TO 130
254                   END IF
255 *
256                   DO 120 IMAT = 1, NIMAT
257 *
258 *                    Do the tests only if DOTYPE( IMAT ) is true.
259 *
260                      IF.NOT.DOTYPE( IMAT ) )
261      $                  GO TO 120
262 *
263 *                    Skip types 2, 3, or 4 if the matrix size is too
264 *                    small.
265 *
266                      ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
267                      IF( ZEROT .AND. N.LT.IMAT-1 )
268      $                  GO TO 120
269 *
270                      IF.NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
271 *
272 *                       Set up parameters with DLATB4 and generate a
273 *                       test matrix with DLATMS.
274 *
275                         CALL DLATB4( PATH, IMAT, M, N, TYPE, KL, KU,
276      $                               ANORM, MODE, CNDNUM, DIST )
277 *
278                         KOFF = MAX1, KU+2-N )
279                         DO 20 I = 1, KOFF - 1
280                            A( I ) = ZERO
281    20                   CONTINUE
282                         SRNAMT = 'DLATMS'
283                         CALL DLATMS( M, N, DIST, ISEED, TYPE, RWORK,
284      $                               MODE, CNDNUM, ANORM, KL, KU, 'Z',
285      $                               A( KOFF ), LDA, WORK, INFO )
286 *
287 *                       Check the error code from DLATMS.
288 *
289                         IF( INFO.NE.0 ) THEN
290                            CALL ALAERH( PATH, 'DLATMS', INFO, 0' ', M,
291      $                                  N, KL, KU, -1, IMAT, NFAIL,
292      $                                  NERRS, NOUT )
293                            GO TO 120
294                         END IF
295                      ELSE IF( IZERO.GT.0 ) THEN
296 *
297 *                       Use the same matrix for types 3 and 4 as for
298 *                       type 2 by copying back the zeroed out column.
299 *
300                         CALL DCOPY( I2-I1+1, B, 1, A( IOFF+I1 ), 1 )
301                      END IF
302 *
303 *                    For types 2, 3, and 4, zero one or more columns of
304 *                    the matrix to test that INFO is returned correctly.
305 *
306                      IZERO = 0
307                      IF( ZEROT ) THEN
308                         IF( IMAT.EQ.2 ) THEN
309                            IZERO = 1
310                         ELSE IF( IMAT.EQ.3 ) THEN
311                            IZERO = MIN( M, N )
312                         ELSE
313                            IZERO = MIN( M, N ) / 2 + 1
314                         END IF
315                         IOFF = ( IZERO-1 )*LDA
316                         IF( IMAT.LT.4 ) THEN
317 *
318 *                          Store the column to be zeroed out in B.
319 *
320                            I1 = MAX1, KU+2-IZERO )
321                            I2 = MIN( KL+KU+1, KU+1+( M-IZERO ) )
322                            CALL DCOPY( I2-I1+1, A( IOFF+I1 ), 1, B, 1 )
323 *
324                            DO 30 I = I1, I2
325                               A( IOFF+I ) = ZERO
326    30                      CONTINUE
327                         ELSE
328                            DO 50 J = IZERO, N
329                               DO 40 I = MAX1, KU+2-J ),
330      $                                MIN( KL+KU+1, KU+1+( M-J ) )
331                                  A( IOFF+I ) = ZERO
332    40                         CONTINUE
333                               IOFF = IOFF + LDA
334    50                      CONTINUE
335                         END IF
336                      END IF
337 *
338 *                    These lines, if used in place of the calls in the
339 *                    loop over INB, cause the code to bomb on a Sun
340 *                    SPARCstation.
341 *
342 *                     ANORMO = DLANGB( 'O', N, KL, KU, A, LDA, RWORK )
343 *                     ANORMI = DLANGB( 'I', N, KL, KU, A, LDA, RWORK )
344 *
345 *                    Do for each blocksize in NBVAL
346 *
347                      DO 110 INB = 1, NNB
348                         NB = NBVAL( INB )
349                         CALL XLAENV( 1, NB )
350 *
351 *                       Compute the LU factorization of the band matrix.
352 *
353                         IF( M.GT.0 .AND. N.GT.0 )
354      $                     CALL DLACPY( 'Full', KL+KU+1, N, A, LDA,
355      $                                  AFAC( KL+1 ), LDAFAC )
356                         SRNAMT = 'DGBTRF'
357                         CALL DGBTRF( M, N, KL, KU, AFAC, LDAFAC, IWORK,
358      $                               INFO )
359 *
360 *                       Check error code from DGBTRF.
361 *
362                         IF( INFO.NE.IZERO )
363      $                     CALL ALAERH( PATH, 'DGBTRF', INFO, IZERO,
364      $                                  ' ', M, N, KL, KU, NB, IMAT,
365      $                                  NFAIL, NERRS, NOUT )
366                         TRFCON = .FALSE.
367 *
368 *+    TEST 1
369 *                       Reconstruct matrix from factors and compute
370 *                       residual.
371 *
372                         CALL DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC,
373      $                               IWORK, WORK, RESULT1 ) )
374 *
375 *                       Print information about the tests so far that
376 *                       did not pass the threshold.
377 *
378                         IFRESULT1 ).GE.THRESH ) THEN
379                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
380      $                        CALL ALAHD( NOUT, PATH )
381                            WRITE( NOUT, FMT = 9997 )M, N, KL, KU, NB,
382      $                        IMAT, 1RESULT1 )
383                            NFAIL = NFAIL + 1
384                         END IF
385                         NRUN = NRUN + 1
386 *
387 *                       Skip the remaining tests if this is not the
388 *                       first block size or if M .ne. N.
389 *
390                         IF( INB.GT.1 .OR. M.NE.N )
391      $                     GO TO 110
392 *
393                         ANORMO = DLANGB( 'O', N, KL, KU, A, LDA, RWORK )
394                         ANORMI = DLANGB( 'I', N, KL, KU, A, LDA, RWORK )
395 *
396                         IF( INFO.EQ.0 ) THEN
397 *
398 *                          Form the inverse of A so we can get a good
399 *                          estimate of CNDNUM = norm(A) * norm(inv(A)).
400 *
401                            LDB = MAX1, N )
402                            CALL DLASET( 'Full', N, N, ZERO, ONE, WORK,
403      $                                  LDB )
404                            SRNAMT = 'DGBTRS'
405                            CALL DGBTRS( 'No transpose', N, KL, KU, N,
406      $                                  AFAC, LDAFAC, IWORK, WORK, LDB,
407      $                                  INFO )
408 *
409 *                          Compute the 1-norm condition number of A.
410 *
411                            AINVNM = DLANGE( 'O', N, N, WORK, LDB,
412      $                              RWORK )
413                            IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
414                               RCONDO = ONE
415                            ELSE
416                               RCONDO = ( ONE / ANORMO ) / AINVNM
417                            END IF
418 *
419 *                          Compute the infinity-norm condition number of
420 *                          A.
421 *
422                            AINVNM = DLANGE( 'I', N, N, WORK, LDB,
423      $                              RWORK )
424                            IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
425                               RCONDI = ONE
426                            ELSE
427                               RCONDI = ( ONE / ANORMI ) / AINVNM
428                            END IF
429                         ELSE
430 *
431 *                          Do only the condition estimate if INFO.NE.0.
432 *
433                            TRFCON = .TRUE.
434                            RCONDO = ZERO
435                            RCONDI = ZERO
436                         END IF
437 *
438 *                       Skip the solve tests if the matrix is singular.
439 *
440                         IF( TRFCON )
441      $                     GO TO 90
442 *
443                         DO 80 IRHS = 1, NNS
444                            NRHS = NSVAL( IRHS )
445                            XTYPE = 'N'
446 *
447                            DO 70 ITRAN = 1, NTRAN
448                               TRANS = TRANSS( ITRAN )
449                               IF( ITRAN.EQ.1 ) THEN
450                                  RCONDC = RCONDO
451                                  NORM = 'O'
452                               ELSE
453                                  RCONDC = RCONDI
454                                  NORM = 'I'
455                               END IF
456 *
457 *+    TEST 2:
458 *                             Solve and compute residual for A * X = B.
459 *
460                               SRNAMT = 'DLARHS'
461                               CALL DLARHS( PATH, XTYPE, ' ', TRANS, N,
462      $                                     N, KL, KU, NRHS, A, LDA,
463      $                                     XACT, LDB, B, LDB, ISEED,
464      $                                     INFO )
465                               XTYPE = 'C'
466                               CALL DLACPY( 'Full', N, NRHS, B, LDB, X,
467      $                                     LDB )
468 *
469                               SRNAMT = 'DGBTRS'
470                               CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFAC,
471      $                                     LDAFAC, IWORK, X, LDB, INFO )
472 *
473 *                             Check error code from DGBTRS.
474 *
475                               IF( INFO.NE.0 )
476      $                           CALL ALAERH( PATH, 'DGBTRS', INFO, 0,
477      $                                        TRANS, N, N, KL, KU, -1,
478      $                                        IMAT, NFAIL, NERRS, NOUT )
479 *
480                               CALL DLACPY( 'Full', N, NRHS, B, LDB,
481      $                                     WORK, LDB )
482                               CALL DGBT02( TRANS, M, N, KL, KU, NRHS, A,
483      $                                     LDA, X, LDB, WORK, LDB,
484      $                                     RESULT2 ) )
485 *
486 *+    TEST 3:
487 *                             Check solution from generated exact
488 *                             solution.
489 *
490                               CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
491      $                                     RCONDC, RESULT3 ) )
492 *
493 *+    TESTS 4, 5, 6:
494 *                             Use iterative refinement to improve the
495 *                             solution.
496 *
497                               SRNAMT = 'DGBRFS'
498                               CALL DGBRFS( TRANS, N, KL, KU, NRHS, A,
499      $                                     LDA, AFAC, LDAFAC, IWORK, B,
500      $                                     LDB, X, LDB, RWORK,
501      $                                     RWORK( NRHS+1 ), WORK,
502      $                                     IWORK( N+1 ), INFO )
503 *
504 *                             Check error code from DGBRFS.
505 *
506                               IF( INFO.NE.0 )
507      $                           CALL ALAERH( PATH, 'DGBRFS', INFO, 0,
508      $                                        TRANS, N, N, KL, KU, NRHS,
509      $                                        IMAT, NFAIL, NERRS, NOUT )
510 *
511                               CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
512      $                                     RCONDC, RESULT4 ) )
513                               CALL DGBT05( TRANS, N, KL, KU, NRHS, A,
514      $                                     LDA, B, LDB, X, LDB, XACT,
515      $                                     LDB, RWORK, RWORK( NRHS+1 ),
516      $                                     RESULT5 ) )
517                               DO 60 K = 26
518                                  IFRESULT( K ).GE.THRESH ) THEN
519                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
520      $                                 CALL ALAHD( NOUT, PATH )
521                                     WRITE( NOUT, FMT = 9996 )TRANS, N,
522      $                                 KL, KU, NRHS, IMAT, K,
523      $                                 RESULT( K )
524                                     NFAIL = NFAIL + 1
525                                  END IF
526    60                         CONTINUE
527                               NRUN = NRUN + 5
528    70                      CONTINUE
529    80                   CONTINUE
530 *
531 *+    TEST 7:
532 *                          Get an estimate of RCOND = 1/CNDNUM.
533 *
534    90                   CONTINUE
535                         DO 100 ITRAN = 12
536                            IF( ITRAN.EQ.1 ) THEN
537                               ANORM = ANORMO
538                               RCONDC = RCONDO
539                               NORM = 'O'
540                            ELSE
541                               ANORM = ANORMI
542                               RCONDC = RCONDI
543                               NORM = 'I'
544                            END IF
545                            SRNAMT = 'DGBCON'
546                            CALL DGBCON( NORM, N, KL, KU, AFAC, LDAFAC,
547      $                                  IWORK, ANORM, RCOND, WORK,
548      $                                  IWORK( N+1 ), INFO )
549 *
550 *                             Check error code from DGBCON.
551 *
552                            IF( INFO.NE.0 )
553      $                        CALL ALAERH( PATH, 'DGBCON', INFO, 0,
554      $                                     NORM, N, N, KL, KU, -1, IMAT,
555      $                                     NFAIL, NERRS, NOUT )
556 *
557                            RESULT7 ) = DGET06( RCOND, RCONDC )
558 *
559 *                          Print information about the tests that did
560 *                          not pass the threshold.
561 *
562                            IFRESULT7 ).GE.THRESH ) THEN
563                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
564      $                           CALL ALAHD( NOUT, PATH )
565                               WRITE( NOUT, FMT = 9995 )NORM, N, KL, KU,
566      $                           IMAT, 7RESULT7 )
567                               NFAIL = NFAIL + 1
568                            END IF
569                            NRUN = NRUN + 1
570   100                   CONTINUE
571 *
572   110                CONTINUE
573   120             CONTINUE
574   130          CONTINUE
575   140       CONTINUE
576   150    CONTINUE
577   160 CONTINUE
578 *
579 *     Print a summary of the results.
580 *
581       CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
582 *
583  9999 FORMAT' *** In DCHKGB, LA=', I5, ' is too small for M=', I5,
584      $      ', N=', I5, ', KL=', I4, ', KU=', I4,
585      $      / ' ==> Increase LA to at least ', I5 )
586  9998 FORMAT' *** In DCHKGB, LAFAC=', I5, ' is too small for M=', I5,
587      $      ', N=', I5, ', KL=', I4, ', KU=', I4,
588      $      / ' ==> Increase LAFAC to at least ', I5 )
589  9997 FORMAT' M =', I5, ', N =', I5, ', KL=', I5, ', KU=', I5,
590      $      ', NB =', I4, ', type ', I1, ', test(', I1, ')='G12.5 )
591  9996 FORMAT' TRANS=''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
592      $      ', NRHS=', I3, ', type ', I1, ', test(', I1, ')='G12.5 )
593  9995 FORMAT' NORM =''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
594      $      ','10X' type ', I1, ', test(', I1, ')='G12.5 )
595 *
596       RETURN
597 *
598 *     End of DCHKGB
599 *
600       END