1       SUBROUTINE DEBCHVXX( THRESH, PATH )
  2       IMPLICIT NONE
  3 *     .. Scalar Arguments ..
  4       DOUBLE PRECISION  THRESH
  5       CHARACTER*3       PATH
  6 *
  7 *  Purpose
  8 *  ======
  9 *
 10 *  DEBCHVXX will run D**SVXX on a series of Hilbert matrices and then
 11 *  compare the error bounds returned by D**SVXX to see if the returned
 12 *  answer indeed falls within those bounds.
 13 *
 14 *  Eight test ratios will be computed.  The tests will pass if they are .LT.
 15 *  THRESH.  There are two cases that are determined by 1 / (SQRT( N ) * EPS).
 16 *  If that value is .LE. to the component wise reciprocal condition number,
 17 *  it uses the guaranteed case, other wise it uses the unguaranteed case.
 18 *
 19 *  Test ratios:
 20 *     Let Xc be X_computed and Xt be X_truth.
 21 *     The norm used is the infinity norm.
 22 
 23 *     Let A be the guaranteed case and B be the unguaranteed case.
 24 *
 25 *       1. Normwise guaranteed forward error bound.
 26 *       A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
 27 *          ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
 28 *          If these conditions are met, the test ratio is set to be
 29 *          ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
 30 *       B: For this case, CGESVXX should just return 1.  If it is less than
 31 *          one, treat it the same as in 1A.  Otherwise it fails. (Set test
 32 *          ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
 33 *
 34 *       2. Componentwise guaranteed forward error bound.
 35 *       A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
 36 *          for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
 37 *          If these conditions are met, the test ratio is set to be
 38 *          ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
 39 *       B: Same as normwise test ratio.
 40 *
 41 *       3. Backwards error.
 42 *       A: The test ratio is set to BERR/EPS.
 43 *       B: Same test ratio.
 44 *
 45 *       4. Reciprocal condition number.
 46 *       A: A condition number is computed with Xt and compared with the one
 47 *          returned from CGESVXX.  Let RCONDc be the RCOND returned by D**SVXX
 48 *          and RCONDt be the RCOND from the truth value.  Test ratio is set to
 49 *          MAX(RCONDc/RCONDt, RCONDt/RCONDc).
 50 *       B: Test ratio is set to 1 / (EPS * RCONDc).
 51 *
 52 *       5. Reciprocal normwise condition number.
 53 *       A: The test ratio is set to
 54 *          MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
 55 *       B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
 56 *
 57 *       6. Reciprocal componentwise condition number.
 58 *       A: Test ratio is set to
 59 *          MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
 60 *       B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
 61 *
 62 *     .. Parameters ..
 63 *     NMAX is determined by the largest number in the inverse of the hilbert
 64 *     matrix.  Precision is exhausted when the largest entry in it is greater
 65 *     than 2 to the power of the number of bits in the fraction of the data
 66 *     type used plus one, which is 24 for single precision.
 67 *     NMAX should be 6 for single and 11 for double.
 68 
 69       INTEGER            NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
 70       PARAMETER          (NMAX = 10, NPARAMS = 2, NERRBND = 3,
 71      $                    NTESTS = 6)
 72 
 73 *     .. Local Scalars ..
 74       INTEGER            N, NRHS, INFO, I ,J, k, NFAIL, LDA,
 75      $                   N_AUX_TESTS, LDAB, LDAFB
 76       CHARACTER          FACT, TRANS, UPLO, EQUED
 77       CHARACTER*2        C2
 78       CHARACTER(3)       NGUAR, CGUAR
 79       LOGICAL            printed_guide
 80       DOUBLE PRECISION   NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
 81      $                   RNORM, RINORM, SUMR, SUMRI, EPS,
 82      $                   BERR(NMAX), RPVGRW, ORCOND,
 83      $                   CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
 84      $                   CWISE_RCOND, NWISE_RCOND,
 85      $                   CONDTHRESH, ERRTHRESH
 86 
 87 *     .. Local Arrays ..
 88       DOUBLE PRECISION   TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
 89      $                   S(NMAX),R(NMAX),C(NMAX), DIFF(NMAX, NMAX),
 90      $                   ERRBND_N(NMAX*3), ERRBND_C(NMAX*3),
 91      $                   A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX),
 92      $                   AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
 93      $                   ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
 94      $                   AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX ),
 95      $                   WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX),
 96      $                   ACOPY(NMAX, NMAX)
 97       INTEGER            IPIV(NMAX), IWORK(3*NMAX)
 98 
 99 *     .. External Functions ..
100       DOUBLE PRECISION   DLAMCH
101 
102 *     .. External Subroutines ..
103       EXTERNAL           DLAHILB, DGESVXX, DPOSVXX, DSYSVXX,
104      $                   DGBSVXX, DLACPY, LSAMEN
105       LOGICAL            LSAMEN
106 
107 *     .. Intrinsic Functions ..
108       INTRINSIC          SQRTMAXABSDBLE
109 
110 *     .. Parameters ..
111       INTEGER            NWISE_I, CWISE_I
112       PARAMETER          (NWISE_I = 1, CWISE_I = 1)
113       INTEGER            BND_I, COND_I
114       PARAMETER          (BND_I = 2, COND_I = 3)
115 
116 *  Create the loop to test out the Hilbert matrices
117 
118       FACT = 'E'
119       UPLO = 'U'
120       TRANS = 'N'
121       EQUED = 'N'
122       EPS = DLAMCH('Epsilon')
123       NFAIL = 0
124       N_AUX_TESTS = 0
125       LDA = NMAX
126       LDAB = (NMAX-1)+(NMAX-1)+1
127       LDAFB = 2*(NMAX-1)+(NMAX-1)+1
128       C2 = PATH( 23 )
129 
130 *     Main loop to test the different Hilbert Matrices.
131 
132       printed_guide = .false.
133 
134       DO N = 1 , NMAX
135          PARAMS(1= -1
136          PARAMS(2= -1
137 
138          KL = N-1
139          KU = N-1
140          NRHS = n
141          M = MAX(SQRT(DBLE(N)), 10.0D+0)
142 
143 *        Generate the Hilbert matrix, its inverse, and the
144 *        right hand side, all scaled by the LCM(1,..,2N-1).
145          CALL DLAHILB(N, N, A, LDA, INVHILB, LDA, B, LDA, WORK, INFO)
146 
147 *        Copy A into ACOPY.
148          CALL DLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX)
149 
150 *        Store A in band format for GB tests
151          DO J = 1, N
152             DO I = 1, KL+KU+1
153                AB( I, J ) = 0.0D+0
154             END DO
155          END DO
156          DO J = 1, N
157             DO I = MAX1, J-KU ), MIN( N, J+KL )
158                AB( KU+1+I-J, J ) = A( I, J )
159             END DO
160          END DO
161 
162 *        Copy AB into ABCOPY.
163          DO J = 1, N
164             DO I = 1, KL+KU+1
165                ABCOPY( I, J ) = 0.0D+0
166             END DO
167          END DO
168          CALL DLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB)
169 
170 *        Call D**SVXX with default PARAMS and N_ERR_BND = 3.
171          IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
172             CALL DSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
173      $           IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
174      $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
175      $           PARAMS, WORK, IWORK, INFO)
176          ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN
177             CALL DPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
178      $           EQUED, S, B, LDA, X, LDA, ORCOND,
179      $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
180      $           PARAMS, WORK, IWORK, INFO)
181          ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN
182             CALL DGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY,
183      $           LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B,
184      $           LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND,
185      $           ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, IWORK,
186      $           INFO)
187          ELSE
188             CALL DGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA,
189      $           IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND,
190      $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
191      $           PARAMS, WORK, IWORK, INFO)
192          END IF
193 
194          N_AUX_TESTS = N_AUX_TESTS + 1
195          IF (ORCOND .LT. EPS) THEN
196 !        Either factorization failed or the matrix is flagged, and 1 <=
197 !        INFO <= N+1. We don't decide based on rcond anymore.
198 !            IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
199 !               NFAIL = NFAIL + 1
200 !               WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
201 !            END IF
202          ELSE
203 !        Either everything succeeded (INFO == 0) or some solution failed
204 !        to converge (INFO > N+1).
205             IF (INFO .GT. 0 .AND. INFO .LE. N+1THEN
206                NFAIL = NFAIL + 1
207                WRITE (*FMT=8000) C2, N, INFO, ORCOND, RCOND
208             END IF
209          END IF
210 
211 *        Calculating the difference between D**SVXX's X and the true X.
212          DO I = 1,N
213             DO J =1,NRHS
214                DIFF(I,J) = X(I,J) - INVHILB(I,J)
215             END DO
216          END DO
217 
218 *        Calculating the RCOND
219          RNORM = 0.0D+0
220          RINORM = 0.0D+0
221          IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) ) THEN
222             DO I = 1, N
223                SUMR = 0.0D+0
224                SUMRI = 0.0D+0
225                DO J = 1, N
226                   SUMR = SUMR + S(I) * ABS(A(I,J)) * S(J)
227                   SUMRI = SUMRI + ABS(INVHILB(I, J)) / (S(J) * S(I))
228 
229                END DO
230                RNORM = MAX(RNORM,SUMR)
231                RINORM = MAX(RINORM,SUMRI)
232             END DO
233          ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) )
234      $           THEN
235             DO I = 1, N
236                SUMR = 0.0D+0
237                SUMRI = 0.0D+0
238                DO J = 1, N
239                   SUMR = SUMR + R(I) * ABS(A(I,J)) * C(J)
240                   SUMRI = SUMRI + ABS(INVHILB(I, J)) / (R(J) * C(I))
241                END DO
242                RNORM = MAX(RNORM,SUMR)
243                RINORM = MAX(RINORM,SUMRI)
244             END DO
245          END IF
246 
247          RNORM = RNORM / ABS(A(11))
248          RCOND = 1.0D+0/(RNORM * RINORM)
249 
250 *        Calculating the R for normwise rcond.
251          DO I = 1, N
252             RINV(I) = 0.0D+0
253          END DO
254          DO J = 1, N
255             DO I = 1, N
256                RINV(I) = RINV(I) + ABS(A(I,J))
257             END DO
258          END DO
259 
260 *        Calculating the Normwise rcond.
261          RINORM = 0.0D+0
262          DO I = 1, N
263             SUMRI = 0.0D+0
264             DO J = 1, N
265                SUMRI = SUMRI + ABS(INVHILB(I,J) * RINV(J))
266             END DO
267             RINORM = MAX(RINORM, SUMRI)
268          END DO
269 
270 !        invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
271 !        by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
272          NCOND = ABS(A(1,1)) / RINORM
273 
274          CONDTHRESH = M * EPS
275          ERRTHRESH = M * EPS
276 
277          DO K = 1, NRHS
278             NORMT = 0.0D+0
279             NORMDIF = 0.0D+0
280             CWISE_ERR = 0.0D+0
281             DO I = 1, N
282                NORMT = MAX(ABS(INVHILB(I, K)), NORMT)
283                NORMDIF = MAX(ABS(X(I,K) - INVHILB(I,K)), NORMDIF)
284                IF (INVHILB(I,K) .NE. 0.0D+0THEN
285                   CWISE_ERR = MAX(ABS(X(I,K) - INVHILB(I,K))
286      $                            /ABS(INVHILB(I,K)), CWISE_ERR)
287                ELSE IF (X(I, K) .NE. 0.0D+0THEN
288                   CWISE_ERR = DLAMCH('OVERFLOW')
289                END IF
290             END DO
291             IF (NORMT .NE. 0.0D+0THEN
292                NWISE_ERR = NORMDIF / NORMT
293             ELSE IF (NORMDIF .NE. 0.0D+0THEN
294                NWISE_ERR = DLAMCH('OVERFLOW')
295             ELSE
296                NWISE_ERR = 0.0D+0
297             ENDIF
298 
299             DO I = 1, N
300                RINV(I) = 0.0D+0
301             END DO
302             DO J = 1, N
303                DO I = 1, N
304                   RINV(I) = RINV(I) + ABS(A(I, J) * INVHILB(J, K))
305                END DO
306             END DO
307             RINORM = 0.0D+0
308             DO I = 1, N
309                SUMRI = 0.0D+0
310                DO J = 1, N
311                   SUMRI = SUMRI
312      $                 + ABS(INVHILB(I, J) * RINV(J) / INVHILB(I, K))
313                END DO
314                RINORM = MAX(RINORM, SUMRI)
315             END DO
316 !        invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
317 !        by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
318             CCOND = ABS(A(1,1))/RINORM
319 
320 !        Forward error bound tests
321             NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS)
322             CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS)
323             NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS)
324             CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS)
325 !            write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
326 !     $           condthresh, ncond.ge.condthresh
327 !            write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
328             IF (NCOND .GE. CONDTHRESH) THEN
329                NGUAR = 'YES'
330                IF (NWISE_BND .GT. ERRTHRESH) THEN
331                   TSTRAT(1= 1/(2.0D+0*EPS)
332                ELSE
333                   IF (NWISE_BND .NE. 0.0D+0THEN
334                      TSTRAT(1= NWISE_ERR / NWISE_BND
335                   ELSE IF (NWISE_ERR .NE. 0.0D+0THEN
336                      TSTRAT(1= 1/(16.0*EPS)
337                   ELSE
338                      TSTRAT(1= 0.0D+0
339                   END IF
340                   IF (TSTRAT(1.GT. 1.0D+0THEN
341                      TSTRAT(1= 1/(4.0D+0*EPS)
342                   END IF
343                END IF
344             ELSE
345                NGUAR = 'NO'
346                IF (NWISE_BND .LT. 1.0D+0THEN
347                   TSTRAT(1= 1/(8.0D+0*EPS)
348                ELSE
349                   TSTRAT(1= 1.0D+0
350                END IF
351             END IF
352 !            write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
353 !     $           condthresh, ccond.ge.condthresh
354 !            write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
355             IF (CCOND .GE. CONDTHRESH) THEN
356                CGUAR = 'YES'
357                IF (CWISE_BND .GT. ERRTHRESH) THEN
358                   TSTRAT(2= 1/(2.0D+0*EPS)
359                ELSE
360                   IF (CWISE_BND .NE. 0.0D+0THEN
361                      TSTRAT(2= CWISE_ERR / CWISE_BND
362                   ELSE IF (CWISE_ERR .NE. 0.0D+0THEN
363                      TSTRAT(2= 1/(16.0D+0*EPS)
364                   ELSE
365                      TSTRAT(2= 0.0D+0
366                   END IF
367                   IF (TSTRAT(2.GT. 1.0D+0) TSTRAT(2= 1/(4.0D+0*EPS)
368                END IF
369             ELSE
370                CGUAR = 'NO'
371                IF (CWISE_BND .LT. 1.0D+0THEN
372                   TSTRAT(2= 1/(8.0D+0*EPS)
373                ELSE
374                   TSTRAT(2= 1.0D+0
375                END IF
376             END IF
377 
378 !     Backwards error test
379             TSTRAT(3= BERR(K)/EPS
380 
381 !     Condition number tests
382             TSTRAT(4= RCOND / ORCOND
383             IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4.LT. 1.0D+0)
384      $         TSTRAT(4= 1.0D+0 / TSTRAT(4)
385 
386             TSTRAT(5= NCOND / NWISE_RCOND
387             IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5.LT. 1.0D+0)
388      $         TSTRAT(5= 1.0D+0 / TSTRAT(5)
389 
390             TSTRAT(6= CCOND / NWISE_RCOND
391             IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6.LT. 1.0D+0)
392      $         TSTRAT(6= 1.0D+0 / TSTRAT(6)
393 
394             DO I = 1, NTESTS
395                IF (TSTRAT(I) .GT. THRESH) THEN
396                   IF (.NOT.PRINTED_GUIDE) THEN
397                      WRITE(*,*)
398                      WRITE*99961
399                      WRITE*99952
400                      WRITE*99943
401                      WRITE*99934
402                      WRITE*99925
403                      WRITE*99916
404                      WRITE*99907
405                      WRITE*99898
406                      WRITE(*,*)
407                      PRINTED_GUIDE = .TRUE.
408                   END IF
409                   WRITE*9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I)
410                   NFAIL = NFAIL + 1
411                END IF
412             END DO
413       END DO
414 
415 c$$$         WRITE(*,*)
416 c$$$         WRITE(*,*) 'Normwise Error Bounds'
417 c$$$         WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
418 c$$$         WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
419 c$$$         WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
420 c$$$         WRITE(*,*)
421 c$$$         WRITE(*,*) 'Componentwise Error Bounds'
422 c$$$         WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
423 c$$$         WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
424 c$$$         WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
425 c$$$         print *, 'Info: ', info
426 c$$$         WRITE(*,*)
427 *         WRITE(*,*) 'TSTRAT: ',TSTRAT
428 
429       END DO
430 
431       WRITE(*,*)
432       IF( NFAIL .GT. 0 ) THEN
433          WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS
434       ELSE
435          WRITE(*,9997) C2
436       END IF
437  9999 FORMAT' D', A2, 'SVXX: N =', I2, ', RHS = ', I2,
438      $     ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A,
439      $     ' test(',I1,') ='G12.5 )
440  9998 FORMAT' D', A2, 'SVXX: ', I6, ' out of ', I6,
441      $     ' tests failed to pass the threshold' )
442  9997 FORMAT' D', A2, 'SVXX passed the tests of error bounds' )
443 *     Test ratios.
444  9996 FORMAT3X, I2, ': Normwise guaranteed forward error'/ 5X,
445      $     'Guaranteed case: if norm ( abs( Xc - Xt )',
446      $     ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then',
447      $     / 5X,
448      $     'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS')
449  9995 FORMAT3X, I2, ': Componentwise guaranteed forward error' )
450  9994 FORMAT3X, I2, ': Backwards error' )
451  9993 FORMAT3X, I2, ': Reciprocal condition number' )
452  9992 FORMAT3X, I2, ': Reciprocal normwise condition number' )
453  9991 FORMAT3X, I2, ': Raw normwise error estimate' )
454  9990 FORMAT3X, I2, ': Reciprocal componentwise condition number' )
455  9989 FORMAT3X, I2, ': Raw componentwise error estimate' )
456 
457  8000 FORMAT' D', A2, 'SVXX: N =', I2, ', INFO = ', I3,
458      $     ', ORCOND = 'G12.5', real RCOND = 'G12.5 )
459 
460       END