1       SUBROUTINE DGTT05( TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX,
  2      $                   XACT, LDXACT, FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          TRANS
 10       INTEGER            LDB, LDX, LDXACT, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DL( * ),
 14      $                   DU( * ), FERR( * ), RESLTS( * ), X( LDX, * ),
 15      $                   XACT( LDXACT, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  DGTT05 tests the error bounds from iterative refinement for the
 22 *  computed solution to a system of equations A*X = B, where A is a
 23 *  general tridiagonal matrix of order n and op(A) = A or A**T,
 24 *  depending on TRANS.
 25 *
 26 *  RESLTS(1) = test of the error bound
 27 *            = norm(X - XACT) / ( norm(X) * FERR )
 28 *
 29 *  A large value is returned if this ratio is not less than one.
 30 *
 31 *  RESLTS(2) = residual from the iterative refinement routine
 32 *            = the maximum of BERR / ( NZ*EPS + (*) ), where
 33 *              (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
 34 *              and NZ = max. number of nonzeros in any row of A, plus 1
 35 *
 36 *  Arguments
 37 *  =========
 38 *
 39 *  TRANS   (input) CHARACTER*1
 40 *          Specifies the form of the system of equations.
 41 *          = 'N':  A * X = B     (No transpose)
 42 *          = 'T':  A**T * X = B  (Transpose)
 43 *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 44 *
 45 *  N       (input) INTEGER
 46 *          The number of rows of the matrices X and XACT.  N >= 0.
 47 *
 48 *  NRHS    (input) INTEGER
 49 *          The number of columns of the matrices X and XACT.  NRHS >= 0.
 50 *
 51 *  DL      (input) DOUBLE PRECISION array, dimension (N-1)
 52 *          The (n-1) sub-diagonal elements of A.
 53 *
 54 *  D       (input) DOUBLE PRECISION array, dimension (N)
 55 *          The diagonal elements of A.
 56 *
 57 *  DU      (input) DOUBLE PRECISION array, dimension (N-1)
 58 *          The (n-1) super-diagonal elements of A.
 59 *
 60 *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
 61 *          The right hand side vectors for the system of linear
 62 *          equations.
 63 *
 64 *  LDB     (input) INTEGER
 65 *          The leading dimension of the array B.  LDB >= max(1,N).
 66 *
 67 *  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
 68 *          The computed solution vectors.  Each vector is stored as a
 69 *          column of the matrix X.
 70 *
 71 *  LDX     (input) INTEGER
 72 *          The leading dimension of the array X.  LDX >= max(1,N).
 73 *
 74 *  XACT    (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
 75 *          The exact solution vectors.  Each vector is stored as a
 76 *          column of the matrix XACT.
 77 *
 78 *  LDXACT  (input) INTEGER
 79 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 80 *
 81 *  FERR    (input) DOUBLE PRECISION array, dimension (NRHS)
 82 *          The estimated forward error bounds for each solution vector
 83 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
 84 *          of the largest entry in (X - XTRUE) divided by the magnitude
 85 *          of the largest entry in X.
 86 *
 87 *  BERR    (input) DOUBLE PRECISION array, dimension (NRHS)
 88 *          The componentwise relative backward error of each solution
 89 *          vector (i.e., the smallest relative change in any entry of A
 90 *          or B that makes X an exact solution).
 91 *
 92 *  RESLTS  (output) DOUBLE PRECISION array, dimension (2)
 93 *          The maximum over the NRHS solution vectors of the ratios:
 94 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 95 *          RESLTS(2) = BERR / ( NZ*EPS + (*) )
 96 *
 97 *  =====================================================================
 98 *
 99 *     .. Parameters ..
100       DOUBLE PRECISION   ZERO, ONE
101       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
102 *     ..
103 *     .. Local Scalars ..
104       LOGICAL            NOTRAN
105       INTEGER            I, IMAX, J, K, NZ
106       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
107 *     ..
108 *     .. External Functions ..
109       LOGICAL            LSAME
110       INTEGER            IDAMAX
111       DOUBLE PRECISION   DLAMCH
112       EXTERNAL           LSAME, IDAMAX, DLAMCH
113 *     ..
114 *     .. Intrinsic Functions ..
115       INTRINSIC          ABSMAXMIN
116 *     ..
117 *     .. Executable Statements ..
118 *
119 *     Quick exit if N = 0 or NRHS = 0.
120 *
121       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
122          RESLTS( 1 ) = ZERO
123          RESLTS( 2 ) = ZERO
124          RETURN
125       END IF
126 *
127       EPS = DLAMCH( 'Epsilon' )
128       UNFL = DLAMCH( 'Safe minimum' )
129       OVFL = ONE / UNFL
130       NOTRAN = LSAME( TRANS, 'N' )
131       NZ = 4
132 *
133 *     Test 1:  Compute the maximum of
134 *        norm(X - XACT) / ( norm(X) * FERR )
135 *     over all the vectors X and XACT using the infinity-norm.
136 *
137       ERRBND = ZERO
138       DO 30 J = 1, NRHS
139          IMAX = IDAMAX( N, X( 1, J ), 1 )
140          XNORM = MAXABS( X( IMAX, J ) ), UNFL )
141          DIFF = ZERO
142          DO 10 I = 1, N
143             DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
144    10    CONTINUE
145 *
146          IF( XNORM.GT.ONE ) THEN
147             GO TO 20
148          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
149             GO TO 20
150          ELSE
151             ERRBND = ONE / EPS
152             GO TO 30
153          END IF
154 *
155    20    CONTINUE
156          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
157             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
158          ELSE
159             ERRBND = ONE / EPS
160          END IF
161    30 CONTINUE
162       RESLTS( 1 ) = ERRBND
163 *
164 *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
165 *     (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
166 *
167       DO 60 K = 1, NRHS
168          IF( NOTRAN ) THEN
169             IF( N.EQ.1 ) THEN
170                AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
171             ELSE
172                AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
173      $                ABS( DU( 1 )*X( 2, K ) )
174                DO 40 I = 2, N - 1
175                   TMP = ABS( B( I, K ) ) + ABS( DL( I-1 )*X( I-1, K ) )
176      $                   + ABS( D( I )*X( I, K ) ) +
177      $                  ABS( DU( I )*X( I+1, K ) )
178                   AXBI = MIN( AXBI, TMP )
179    40          CONTINUE
180                TMP = ABS( B( N, K ) ) + ABS( DL( N-1 )*X( N-1, K ) ) +
181      $               ABS( D( N )*X( N, K ) )
182                AXBI = MIN( AXBI, TMP )
183             END IF
184          ELSE
185             IF( N.EQ.1 ) THEN
186                AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
187             ELSE
188                AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
189      $                ABS( DL( 1 )*X( 2, K ) )
190                DO 50 I = 2, N - 1
191                   TMP = ABS( B( I, K ) ) + ABS( DU( I-1 )*X( I-1, K ) )
192      $                   + ABS( D( I )*X( I, K ) ) +
193      $                  ABS( DL( I )*X( I+1, K ) )
194                   AXBI = MIN( AXBI, TMP )
195    50          CONTINUE
196                TMP = ABS( B( N, K ) ) + ABS( DU( N-1 )*X( N-1, K ) ) +
197      $               ABS( D( N )*X( N, K ) )
198                AXBI = MIN( AXBI, TMP )
199             END IF
200          END IF
201          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
202          IF( K.EQ.1 ) THEN
203             RESLTS( 2 ) = TMP
204          ELSE
205             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
206          END IF
207    60 CONTINUE
208 *
209       RETURN
210 *
211 *     End of DGTT05
212 *
213       END