1       SUBROUTINE DPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
  2      $                   RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            KD, LDA, LDAFAC, N
 11       DOUBLE PRECISION   RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DPBT01 reconstructs a symmetric positive definite band matrix A from
 21 *  its L*L' or U'*U factorization and computes the residual
 22 *     norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 23 *     norm( U'*U - A ) / ( N * norm(A) * EPS ),
 24 *  where EPS is the machine epsilon, L' is the conjugate transpose of
 25 *  L, and U' is the conjugate transpose of U.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  UPLO    (input) CHARACTER*1
 31 *          Specifies whether the upper or lower triangular part of the
 32 *          symmetric matrix A is stored:
 33 *          = 'U':  Upper triangular
 34 *          = 'L':  Lower triangular
 35 *
 36 *  N       (input) INTEGER
 37 *          The number of rows and columns of the matrix A.  N >= 0.
 38 *
 39 *  KD      (input) INTEGER
 40 *          The number of super-diagonals of the matrix A if UPLO = 'U',
 41 *          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 42 *
 43 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 44 *          The original symmetric band matrix A.  If UPLO = 'U', the
 45 *          upper triangular part of A is stored as a band matrix; if
 46 *          UPLO = 'L', the lower triangular part of A is stored.  The
 47 *          columns of the appropriate triangle are stored in the columns
 48 *          of A and the diagonals of the triangle are stored in the rows
 49 *          of A.  See DPBTRF for further details.
 50 *
 51 *  LDA     (input) INTEGER.
 52 *          The leading dimension of the array A.  LDA >= max(1,KD+1).
 53 *
 54 *  AFAC    (input) DOUBLE PRECISION array, dimension (LDAFAC,N)
 55 *          The factored form of the matrix A.  AFAC contains the factor
 56 *          L or U from the L*L' or U'*U factorization in band storage
 57 *          format, as computed by DPBTRF.
 58 *
 59 *  LDAFAC  (input) INTEGER
 60 *          The leading dimension of the array AFAC.
 61 *          LDAFAC >= max(1,KD+1).
 62 *
 63 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
 64 *
 65 *  RESID   (output) DOUBLE PRECISION
 66 *          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
 67 *          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
 68 *
 69 *  =====================================================================
 70 *
 71 *
 72 *     .. Parameters ..
 73       DOUBLE PRECISION   ZERO, ONE
 74       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 75 *     ..
 76 *     .. Local Scalars ..
 77       INTEGER            I, J, K, KC, KLEN, ML, MU
 78       DOUBLE PRECISION   ANORM, EPS, T
 79 *     ..
 80 *     .. External Functions ..
 81       LOGICAL            LSAME
 82       DOUBLE PRECISION   DDOT, DLAMCH, DLANSB
 83       EXTERNAL           LSAME, DDOT, DLAMCH, DLANSB
 84 *     ..
 85 *     .. External Subroutines ..
 86       EXTERNAL           DSCAL, DSYR, DTRMV
 87 *     ..
 88 *     .. Intrinsic Functions ..
 89       INTRINSIC          DBLEMAXMIN
 90 *     ..
 91 *     .. Executable Statements ..
 92 *
 93 *     Quick exit if N = 0.
 94 *
 95       IF( N.LE.0 ) THEN
 96          RESID = ZERO
 97          RETURN
 98       END IF
 99 *
100 *     Exit with RESID = 1/EPS if ANORM = 0.
101 *
102       EPS = DLAMCH( 'Epsilon' )
103       ANORM = DLANSB( '1', UPLO, N, KD, A, LDA, RWORK )
104       IF( ANORM.LE.ZERO ) THEN
105          RESID = ONE / EPS
106          RETURN
107       END IF
108 *
109 *     Compute the product U'*U, overwriting U.
110 *
111       IF( LSAME( UPLO, 'U' ) ) THEN
112          DO 10 K = N, 1-1
113             KC = MAX1, KD+2-K )
114             KLEN = KD + 1 - KC
115 *
116 *           Compute the (K,K) element of the result.
117 *
118             T = DDOT( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
119             AFAC( KD+1, K ) = T
120 *
121 *           Compute the rest of column K.
122 *
123             IF( KLEN.GT.0 )
124      $         CALL DTRMV( 'Upper''Transpose''Non-unit', KLEN,
125      $                     AFAC( KD+1, K-KLEN ), LDAFAC-1,
126      $                     AFAC( KC, K ), 1 )
127 *
128    10    CONTINUE
129 *
130 *     UPLO = 'L':  Compute the product L*L', overwriting L.
131 *
132       ELSE
133          DO 20 K = N, 1-1
134             KLEN = MIN( KD, N-K )
135 *
136 *           Add a multiple of column K of the factor L to each of
137 *           columns K+1 through N.
138 *
139             IF( KLEN.GT.0 )
140      $         CALL DSYR( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
141      $                    AFAC( 1, K+1 ), LDAFAC-1 )
142 *
143 *           Scale column K by the diagonal element.
144 *
145             T = AFAC( 1, K )
146             CALL DSCAL( KLEN+1, T, AFAC( 1, K ), 1 )
147 *
148    20    CONTINUE
149       END IF
150 *
151 *     Compute the difference  L*L' - A  or  U'*U - A.
152 *
153       IF( LSAME( UPLO, 'U' ) ) THEN
154          DO 40 J = 1, N
155             MU = MAX1, KD+2-J )
156             DO 30 I = MU, KD + 1
157                AFAC( I, J ) = AFAC( I, J ) - A( I, J )
158    30       CONTINUE
159    40    CONTINUE
160       ELSE
161          DO 60 J = 1, N
162             ML = MIN( KD+1, N-J+1 )
163             DO 50 I = 1, ML
164                AFAC( I, J ) = AFAC( I, J ) - A( I, J )
165    50       CONTINUE
166    60    CONTINUE
167       END IF
168 *
169 *     Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
170 *
171       RESID = DLANSB( 'I', UPLO, N, KD, AFAC, LDAFAC, RWORK )
172 *
173       RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
174 *
175       RETURN
176 *
177 *     End of DPBT01
178 *
179       END