1       SUBROUTINE DTRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
  2      $                   WORK, RESID )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, UPLO
 10       INTEGER            LDA, LDAINV, N
 11       DOUBLE PRECISION   RCOND, RESID
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   A( LDA, * ), AINV( LDAINV, * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DTRT01 computes the residual for a triangular matrix A times its
 21 *  inverse:
 22 *     RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
 23 *  where EPS is the machine epsilon.
 24 *
 25 *  Arguments
 26 *  ==========
 27 *
 28 *  UPLO    (input) CHARACTER*1
 29 *          Specifies whether the matrix A is upper or lower triangular.
 30 *          = 'U':  Upper triangular
 31 *          = 'L':  Lower triangular
 32 *
 33 *  DIAG    (input) CHARACTER*1
 34 *          Specifies whether or not the matrix A is unit triangular.
 35 *          = 'N':  Non-unit triangular
 36 *          = 'U':  Unit triangular
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrix A.  N >= 0.
 40 *
 41 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 42 *          The triangular matrix A.  If UPLO = 'U', the leading n by n
 43 *          upper triangular part of the array A contains the upper
 44 *          triangular matrix, and the strictly lower triangular part of
 45 *          A is not referenced.  If UPLO = 'L', the leading n by n lower
 46 *          triangular part of the array A contains the lower triangular
 47 *          matrix, and the strictly upper triangular part of A is not
 48 *          referenced.  If DIAG = 'U', the diagonal elements of A are
 49 *          also not referenced and are assumed to be 1.
 50 *
 51 *  LDA     (input) INTEGER
 52 *          The leading dimension of the array A.  LDA >= max(1,N).
 53 *
 54 *  AINV    (input/output) DOUBLE PRECISION array, dimension (LDAINV,N)
 55 *          On entry, the (triangular) inverse of the matrix A, in the
 56 *          same storage format as A.
 57 *          On exit, the contents of AINV are destroyed.
 58 *
 59 *  LDAINV  (input) INTEGER
 60 *          The leading dimension of the array AINV.  LDAINV >= max(1,N).
 61 *
 62 *  RCOND   (output) DOUBLE PRECISION
 63 *          The reciprocal condition number of A, computed as
 64 *          1/(norm(A) * norm(AINV)).
 65 *
 66 *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
 67 *
 68 *  RESID   (output) DOUBLE PRECISION
 69 *          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
 70 *
 71 *  =====================================================================
 72 *
 73 *     .. Parameters ..
 74       DOUBLE PRECISION   ZERO, ONE
 75       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 76 *     ..
 77 *     .. Local Scalars ..
 78       INTEGER            J
 79       DOUBLE PRECISION   AINVNM, ANORM, EPS
 80 *     ..
 81 *     .. External Functions ..
 82       LOGICAL            LSAME
 83       DOUBLE PRECISION   DLAMCH, DLANTR
 84       EXTERNAL           LSAME, DLAMCH, DLANTR
 85 *     ..
 86 *     .. External Subroutines ..
 87       EXTERNAL           DTRMV
 88 *     ..
 89 *     .. Intrinsic Functions ..
 90       INTRINSIC          DBLE
 91 *     ..
 92 *     .. Executable Statements ..
 93 *
 94 *     Quick exit if N = 0
 95 *
 96       IF( N.LE.0 ) THEN
 97          RCOND = ONE
 98          RESID = ZERO
 99          RETURN
100       END IF
101 *
102 *     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
103 *
104       EPS = DLAMCH( 'Epsilon' )
105       ANORM = DLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK )
106       AINVNM = DLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, WORK )
107       IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
108          RCOND = ZERO
109          RESID = ONE / EPS
110          RETURN
111       END IF
112       RCOND = ( ONE / ANORM ) / AINVNM
113 *
114 *     Set the diagonal of AINV to 1 if AINV has unit diagonal.
115 *
116       IF( LSAME( DIAG, 'U' ) ) THEN
117          DO 10 J = 1, N
118             AINV( J, J ) = ONE
119    10    CONTINUE
120       END IF
121 *
122 *     Compute A * AINV, overwriting AINV.
123 *
124       IF( LSAME( UPLO, 'U' ) ) THEN
125          DO 20 J = 1, N
126             CALL DTRMV( 'Upper''No transpose', DIAG, J, A, LDA,
127      $                  AINV( 1, J ), 1 )
128    20    CONTINUE
129       ELSE
130          DO 30 J = 1, N
131             CALL DTRMV( 'Lower''No transpose', DIAG, N-J+1, A( J, J ),
132      $                  LDA, AINV( J, J ), 1 )
133    30    CONTINUE
134       END IF
135 *
136 *     Subtract 1 from each diagonal element to form A*AINV - I.
137 *
138       DO 40 J = 1, N
139          AINV( J, J ) = AINV( J, J ) - ONE
140    40 CONTINUE
141 *
142 *     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
143 *
144       RESID = DLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, WORK )
145 *
146       RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS
147 *
148       RETURN
149 *
150 *     End of DTRT01
151 *
152       END