1       SUBROUTINE DTRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  2      $                   LDX, XACT, LDXACT, FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, TRANS, UPLO
 10       INTEGER            LDA, LDB, LDX, LDXACT, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
 14      $                   RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  DTRT05 tests the error bounds from iterative refinement for the
 21 *  computed solution to a system of equations A*X = B, where A is a
 22 *  triangular n by n matrix.
 23 *
 24 *  RESLTS(1) = test of the error bound
 25 *            = norm(X - XACT) / ( norm(X) * FERR )
 26 *
 27 *  A large value is returned if this ratio is not less than one.
 28 *
 29 *  RESLTS(2) = residual from the iterative refinement routine
 30 *            = the maximum of BERR / ( (n+1)*EPS + (*) ), where
 31 *              (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 32 *
 33 *  Arguments
 34 *  =========
 35 *
 36 *  UPLO    (input) CHARACTER*1
 37 *          Specifies whether the matrix A is upper or lower triangular.
 38 *          = 'U':  Upper triangular
 39 *          = 'L':  Lower triangular
 40 *
 41 *  TRANS   (input) CHARACTER*1
 42 *          Specifies the form of the system of equations.
 43 *          = 'N':  A * X = B  (No transpose)
 44 *          = 'T':  A'* X = B  (Transpose)
 45 *          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 46 *
 47 *  DIAG    (input) CHARACTER*1
 48 *          Specifies whether or not the matrix A is unit triangular.
 49 *          = 'N':  Non-unit triangular
 50 *          = 'U':  Unit triangular
 51 *
 52 *  N       (input) INTEGER
 53 *          The number of rows of the matrices X, B, and XACT, and the
 54 *          order of the matrix A.  N >= 0.
 55 *
 56 *  NRHS    (input) INTEGER
 57 *          The number of columns of the matrices X, B, and XACT.
 58 *          NRHS >= 0.
 59 *
 60 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 61 *          The triangular matrix A.  If UPLO = 'U', the leading n by n
 62 *          upper triangular part of the array A contains the upper
 63 *          triangular matrix, and the strictly lower triangular part of
 64 *          A is not referenced.  If UPLO = 'L', the leading n by n lower
 65 *          triangular part of the array A contains the lower triangular
 66 *          matrix, and the strictly upper triangular part of A is not
 67 *          referenced.  If DIAG = 'U', the diagonal elements of A are
 68 *          also not referenced and are assumed to be 1.
 69 *
 70 *  LDA     (input) INTEGER
 71 *          The leading dimension of the array A.  LDA >= max(1,N).
 72 *
 73 *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
 74 *          The right hand side vectors for the system of linear
 75 *          equations.
 76 *
 77 *  LDB     (input) INTEGER
 78 *          The leading dimension of the array B.  LDB >= max(1,N).
 79 *
 80 *  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
 81 *          The computed solution vectors.  Each vector is stored as a
 82 *          column of the matrix X.
 83 *
 84 *  LDX     (input) INTEGER
 85 *          The leading dimension of the array X.  LDX >= max(1,N).
 86 *
 87 *  XACT    (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
 88 *          The exact solution vectors.  Each vector is stored as a
 89 *          column of the matrix XACT.
 90 *
 91 *  LDXACT  (input) INTEGER
 92 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 93 *
 94 *  FERR    (input) DOUBLE PRECISION array, dimension (NRHS)
 95 *          The estimated forward error bounds for each solution vector
 96 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
 97 *          of the largest entry in (X - XTRUE) divided by the magnitude
 98 *          of the largest entry in X.
 99 *
100 *  BERR    (input) DOUBLE PRECISION array, dimension (NRHS)
101 *          The componentwise relative backward error of each solution
102 *          vector (i.e., the smallest relative change in any entry of A
103 *          or B that makes X an exact solution).
104 *
105 *  RESLTS  (output) DOUBLE PRECISION array, dimension (2)
106 *          The maximum over the NRHS solution vectors of the ratios:
107 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
108 *          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
109 *
110 *  =====================================================================
111 *
112 *     .. Parameters ..
113       DOUBLE PRECISION   ZERO, ONE
114       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
115 *     ..
116 *     .. Local Scalars ..
117       LOGICAL            NOTRAN, UNIT, UPPER
118       INTEGER            I, IFU, IMAX, J, K
119       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
120 *     ..
121 *     .. External Functions ..
122       LOGICAL            LSAME
123       INTEGER            IDAMAX
124       DOUBLE PRECISION   DLAMCH
125       EXTERNAL           LSAME, IDAMAX, DLAMCH
126 *     ..
127 *     .. Intrinsic Functions ..
128       INTRINSIC          ABSMAXMIN
129 *     ..
130 *     .. Executable Statements ..
131 *
132 *     Quick exit if N = 0 or NRHS = 0.
133 *
134       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
135          RESLTS( 1 ) = ZERO
136          RESLTS( 2 ) = ZERO
137          RETURN
138       END IF
139 *
140       EPS = DLAMCH( 'Epsilon' )
141       UNFL = DLAMCH( 'Safe minimum' )
142       OVFL = ONE / UNFL
143       UPPER = LSAME( UPLO, 'U' )
144       NOTRAN = LSAME( TRANS, 'N' )
145       UNIT = LSAME( DIAG, 'U' )
146 *
147 *     Test 1:  Compute the maximum of
148 *        norm(X - XACT) / ( norm(X) * FERR )
149 *     over all the vectors X and XACT using the infinity-norm.
150 *
151       ERRBND = ZERO
152       DO 30 J = 1, NRHS
153          IMAX = IDAMAX( N, X( 1, J ), 1 )
154          XNORM = MAXABS( X( IMAX, J ) ), UNFL )
155          DIFF = ZERO
156          DO 10 I = 1, N
157             DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
158    10    CONTINUE
159 *
160          IF( XNORM.GT.ONE ) THEN
161             GO TO 20
162          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
163             GO TO 20
164          ELSE
165             ERRBND = ONE / EPS
166             GO TO 30
167          END IF
168 *
169    20    CONTINUE
170          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
171             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
172          ELSE
173             ERRBND = ONE / EPS
174          END IF
175    30 CONTINUE
176       RESLTS( 1 ) = ERRBND
177 *
178 *     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
179 *     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
180 *
181       IFU = 0
182       IFUNIT )
183      $   IFU = 1
184       DO 90 K = 1, NRHS
185          DO 80 I = 1, N
186             TMP = ABS( B( I, K ) )
187             IF( UPPER ) THEN
188                IF.NOT.NOTRAN ) THEN
189                   DO 40 J = 1, I - IFU
190                      TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) )
191    40             CONTINUE
192                   IFUNIT )
193      $               TMP = TMP + ABS( X( I, K ) )
194                ELSE
195                   IFUNIT )
196      $               TMP = TMP + ABS( X( I, K ) )
197                   DO 50 J = I + IFU, N
198                      TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) )
199    50             CONTINUE
200                END IF
201             ELSE
202                IF( NOTRAN ) THEN
203                   DO 60 J = 1, I - IFU
204                      TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) )
205    60             CONTINUE
206                   IFUNIT )
207      $               TMP = TMP + ABS( X( I, K ) )
208                ELSE
209                   IFUNIT )
210      $               TMP = TMP + ABS( X( I, K ) )
211                   DO 70 J = I + IFU, N
212                      TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) )
213    70             CONTINUE
214                END IF
215             END IF
216             IF( I.EQ.1 ) THEN
217                AXBI = TMP
218             ELSE
219                AXBI = MIN( AXBI, TMP )
220             END IF
221    80    CONTINUE
222          TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
223      $         MAX( AXBI, ( N+1 )*UNFL ) )
224          IF( K.EQ.1 ) THEN
225             RESLTS( 2 ) = TMP
226          ELSE
227             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
228          END IF
229    90 CONTINUE
230 *
231       RETURN
232 *
233 *     End of DTRT05
234 *
235       END