1       SUBROUTINE SEBCHVXX( THRESH, PATH )
  2       IMPLICIT NONE
  3 *     .. Scalar Arguments ..
  4       REAL               THRESH
  5       CHARACTER*3        PATH
  6 *
  7 *  Purpose
  8 *  ======
  9 *
 10 *  SEBCHVXX will run S**SVXX on a series of Hilbert matrices and then
 11 *  compare the error bounds returned by SGESVXX to see if the returned
 12 *  answer indeed falls within those bounds.
 13 *
 14 *  Eight test ratios will be computed.  The tests will pass if they are .LT.
 15 *  THRESH.  There are two cases that are determined by 1 / (SQRT( N ) * EPS).
 16 *  If that value is .LE. to the component wise reciprocal condition number,
 17 *  it uses the guaranteed case, other wise it uses the unguaranteed case.
 18 *
 19 *  Test ratios:
 20 *     Let Xc be X_computed and Xt be X_truth.
 21 *     The norm used is the infinity norm.
 22 
 23 *     Let A be the guaranteed case and B be the unguaranteed case.
 24 *
 25 *       1. Normwise guaranteed forward error bound.
 26 *       A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
 27 *          ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
 28 *          If these conditions are met, the test ratio is set to be
 29 *          ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
 30 *       B: For this case, SGESVXX should just return 1.  If it is less than
 31 *          one, treat it the same as in 1A.  Otherwise it fails. (Set test
 32 *          ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
 33 *
 34 *       2. Componentwise guaranteed forward error bound.
 35 *       A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
 36 *          for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
 37 *          If these conditions are met, the test ratio is set to be
 38 *          ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
 39 *       B: Same as normwise test ratio.
 40 *
 41 *       3. Backwards error.
 42 *       A: The test ratio is set to BERR/EPS.
 43 *       B: Same test ratio.
 44 *
 45 *       4. Reciprocal condition number.
 46 *       A: A condition number is computed with Xt and compared with the one
 47 *          returned from SGESVXX.  Let RCONDc be the RCOND returned by SGESVXX
 48 *          and RCONDt be the RCOND from the truth value.  Test ratio is set to
 49 *          MAX(RCONDc/RCONDt, RCONDt/RCONDc).
 50 *       B: Test ratio is set to 1 / (EPS * RCONDc).
 51 *
 52 *       5. Reciprocal normwise condition number.
 53 *       A: The test ratio is set to
 54 *          MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
 55 *       B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
 56 *
 57 *       7. Reciprocal componentwise condition number.
 58 *       A: Test ratio is set to
 59 *          MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
 60 *       B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
 61 *
 62 *     .. Parameters ..
 63 *     NMAX is determined by the largest number in the inverse of the Hilbert
 64 *     matrix.  Precision is exhausted when the largest entry in it is greater
 65 *     than 2 to the power of the number of bits in the fraction of the data
 66 *     type used plus one, which is 24 for single precision.
 67 *     NMAX should be 6 for single and 11 for double.
 68 
 69       INTEGER            NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
 70       PARAMETER          (NMAX = 6, NPARAMS = 2, NERRBND = 3,
 71      $                    NTESTS = 6)
 72 
 73 *     .. Local Scalars ..
 74       INTEGER            N, NRHS, INFO, I ,J, k, NFAIL, LDA, LDAB,
 75      $                   LDAFB, N_AUX_TESTS
 76       CHARACTER          FACT, TRANS, UPLO, EQUED
 77       CHARACTER*2        C2
 78       CHARACTER(3)       NGUAR, CGUAR
 79       LOGICAL            printed_guide
 80       REAL               NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
 81      $                   RNORM, RINORM, SUMR, SUMRI, EPS,
 82      $                   BERR(NMAX), RPVGRW, ORCOND,
 83      $                   CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
 84      $                   CWISE_RCOND, NWISE_RCOND,
 85      $                   CONDTHRESH, ERRTHRESH
 86 
 87 *     .. Local Arrays ..
 88       REAL               TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
 89      $                   A(NMAX, NMAX), ACOPY(NMAX, NMAX),
 90      $                   INVHILB(NMAX, NMAX), R(NMAX), C(NMAX), S(NMAX),
 91      $                   WORK(NMAX * 5), B(NMAX, NMAX), X(NMAX, NMAX),
 92      $                   DIFF(NMAX, NMAX), AF(NMAX, NMAX),
 93      $                   AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
 94      $                   ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
 95      $                   AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX ),
 96      $                   ERRBND_N(NMAX*3), ERRBND_C(NMAX*3)
 97       INTEGER            IWORK(NMAX), IPIV(NMAX)
 98 
 99 *     .. External Functions ..
100       REAL               SLAMCH
101 
102 *     .. External Subroutines ..
103       EXTERNAL           SLAHILB, SGESVXX, SSYSVXX, SPOSVXX, SGBSVXX,
104      $                   SLACPY, LSAMEN
105       LOGICAL            LSAMEN
106 
107 *     .. Intrinsic Functions ..
108       INTRINSIC          SQRTMAXABS
109 
110 *     .. Parameters ..
111       INTEGER            NWISE_I, CWISE_I
112       PARAMETER          (NWISE_I = 1, CWISE_I = 1)
113       INTEGER            BND_I, COND_I
114       PARAMETER          (BND_I = 2, COND_I = 3)
115 
116 *     Create the loop to test out the Hilbert matrices
117 
118       FACT = 'E'
119       UPLO = 'U'
120       TRANS = 'N'
121       EQUED = 'N'
122       EPS = SLAMCH('Epsilon')
123       NFAIL = 0
124       N_AUX_TESTS = 0
125       LDA = NMAX
126       LDAB = (NMAX-1)+(NMAX-1)+1
127       LDAFB = 2*(NMAX-1)+(NMAX-1)+1
128       C2 = PATH( 23 )
129 
130 *     Main loop to test the different Hilbert Matrices.
131 
132       printed_guide = .false.
133 
134       DO N = 1 , NMAX
135          PARAMS(1= -1
136          PARAMS(2= -1
137 
138          KL = N-1
139          KU = N-1
140          NRHS = n
141          M = MAX(SQRT(REAL(N)), 10.0)
142 
143 *        Generate the Hilbert matrix, its inverse, and the
144 *        right hand side, all scaled by the LCM(1,..,2N-1).
145          CALL SLAHILB(N, N, A, LDA, INVHILB, LDA, B, LDA, WORK, INFO)
146 
147 *        Copy A into ACOPY.
148          CALL SLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX)
149 
150 *        Store A in band format for GB tests
151          DO J = 1, N
152             DO I = 1, KL+KU+1
153                AB( I, J ) = 0.0E+0
154             END DO
155          END DO
156          DO J = 1, N
157             DO I = MAX1, J-KU ), MIN( N, J+KL )
158                AB( KU+1+I-J, J ) = A( I, J )
159             END DO
160          END DO
161 
162 *        Copy AB into ABCOPY.
163          DO J = 1, N
164             DO I = 1, KL+KU+1
165                ABCOPY( I, J ) = 0.0E+0
166             END DO
167          END DO
168          CALL SLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB)
169 
170 *        Call S**SVXX with default PARAMS and N_ERR_BND = 3.
171          IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
172             CALL SSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
173      $           IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
174      $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
175      $           PARAMS, WORK, IWORK, INFO)
176          ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN
177             CALL SPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
178      $           EQUED, S, B, LDA, X, LDA, ORCOND,
179      $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
180      $           PARAMS, WORK, IWORK, INFO)
181          ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN
182             CALL SGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY,
183      $           LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B,
184      $           LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND,
185      $           ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, IWORK,
186      $           INFO)
187          ELSE
188             CALL SGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA,
189      $           IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND,
190      $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
191      $           PARAMS, WORK, IWORK, INFO)
192          END IF
193 
194          N_AUX_TESTS = N_AUX_TESTS + 1
195          IF (ORCOND .LT. EPS) THEN
196 !        Either factorization failed or the matrix is flagged, and 1 <=
197 !        INFO <= N+1. We don't decide based on rcond anymore.
198 !            IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
199 !               NFAIL = NFAIL + 1
200 !               WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
201 !            END IF
202          ELSE
203 !        Either everything succeeded (INFO == 0) or some solution failed
204 !        to converge (INFO > N+1).
205             IF (INFO .GT. 0 .AND. INFO .LE. N+1THEN
206                NFAIL = NFAIL + 1
207                WRITE (*FMT=8000) C2, N, INFO, ORCOND, RCOND
208             END IF
209          END IF
210 
211 *        Calculating the difference between S**SVXX's X and the true X.
212          DO I = 1, N
213             DO J = 1, NRHS
214                DIFF( I, J ) = X( I, J ) - INVHILB( I, J )
215             END DO
216          END DO
217 
218 *        Calculating the RCOND
219          RNORM = 0
220          RINORM = 0
221          IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) ) THEN
222             DO I = 1, N
223                SUMR = 0
224                SUMRI = 0
225                DO J = 1, N
226                   SUMR = SUMR + ABS(S(I) * A(I,J) * S(J))
227                   SUMRI = SUMRI + ABS(INVHILB(I, J) / S(J) / S(I))
228                END DO
229                RNORM = MAX(RNORM,SUMR)
230                RINORM = MAX(RINORM,SUMRI)
231             END DO
232          ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) )
233      $           THEN
234             DO I = 1, N
235                SUMR = 0
236                SUMRI = 0
237                DO J = 1, N
238                   SUMR = SUMR + ABS(R(I) * A(I,J) * C(J))
239                   SUMRI = SUMRI + ABS(INVHILB(I, J) / R(J) / C(I))
240                END DO
241                RNORM = MAX(RNORM,SUMR)
242                RINORM = MAX(RINORM,SUMRI)
243             END DO
244          END IF
245 
246          RNORM = RNORM / A(11)
247          RCOND = 1.0/(RNORM * RINORM)
248 
249 *        Calculating the R for normwise rcond.
250          DO I = 1, N
251             RINV(I) = 0.0
252          END DO
253          DO J = 1, N
254             DO I = 1, N
255                RINV(I) = RINV(I) + ABS(A(I,J))
256             END DO
257          END DO
258 
259 *        Calculating the Normwise rcond.
260          RINORM = 0.0
261          DO I = 1, N
262             SUMRI = 0.0
263             DO J = 1, N
264                SUMRI = SUMRI + ABS(INVHILB(I,J) * RINV(J))
265             END DO
266             RINORM = MAX(RINORM, SUMRI)
267          END DO
268 
269 !        invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
270 !        by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
271          NCOND = A(1,1/ RINORM
272 
273          CONDTHRESH = M * EPS
274          ERRTHRESH = M * EPS
275 
276          DO K = 1, NRHS
277             NORMT = 0.0
278             NORMDIF = 0.0
279             CWISE_ERR = 0.0
280             DO I = 1, N
281                NORMT = MAX(ABS(INVHILB(I, K)), NORMT)
282                NORMDIF = MAX(ABS(X(I,K) - INVHILB(I,K)), NORMDIF)
283                IF (INVHILB(I,K) .NE. 0.0THEN
284                   CWISE_ERR = MAX(ABS(X(I,K) - INVHILB(I,K))
285      $                 /ABS(INVHILB(I,K)), CWISE_ERR)
286                ELSE IF (X(I, K) .NE. 0.0THEN
287                   CWISE_ERR = SLAMCH('OVERFLOW')
288                END IF
289             END DO
290             IF (NORMT .NE. 0.0THEN
291                NWISE_ERR = NORMDIF / NORMT
292             ELSE IF (NORMDIF .NE. 0.0THEN
293                NWISE_ERR = SLAMCH('OVERFLOW')
294             ELSE
295                NWISE_ERR = 0.0
296             ENDIF
297 
298             DO I = 1, N
299                RINV(I) = 0.0
300             END DO
301             DO J = 1, N
302                DO I = 1, N
303                   RINV(I) = RINV(I) + ABS(A(I, J) * INVHILB(J, K))
304                END DO
305             END DO
306             RINORM = 0.0
307             DO I = 1, N
308                SUMRI = 0.0
309                DO J = 1, N
310                   SUMRI = SUMRI
311      $                 + ABS(INVHILB(I, J) * RINV(J) / INVHILB(I, K))
312                END DO
313                RINORM = MAX(RINORM, SUMRI)
314             END DO
315 !        invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
316 !        by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
317             CCOND = A(1,1)/RINORM
318 
319 !        Forward error bound tests
320             NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS)
321             CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS)
322             NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS)
323             CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS)
324 !            write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
325 !     $           condthresh, ncond.ge.condthresh
326 !            write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
327 
328             IF (NCOND .GE. CONDTHRESH) THEN
329                NGUAR = 'YES'
330                IF (NWISE_BND .GT. ERRTHRESH) THEN
331                   TSTRAT(1= 1/(2.0*EPS)
332                ELSE
333 
334                   IF (NWISE_BND .NE. 0.0THEN
335                      TSTRAT(1= NWISE_ERR / NWISE_BND
336                   ELSE IF (NWISE_ERR .NE. 0.0THEN
337                      TSTRAT(1= 1/(16.0*EPS)
338                   ELSE
339                      TSTRAT(1= 0.0
340                   END IF
341                   IF (TSTRAT(1.GT. 1.0THEN
342                      TSTRAT(1= 1/(4.0*EPS)
343                   END IF
344                END IF
345             ELSE
346                NGUAR = 'NO'
347                IF (NWISE_BND .LT. 1.0THEN
348                   TSTRAT(1= 1/(8.0*EPS)
349                ELSE
350                   TSTRAT(1= 1.0
351                END IF
352             END IF
353 !            write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
354 !     $           condthresh, ccond.ge.condthresh
355 !            write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
356             IF (CCOND .GE. CONDTHRESH) THEN
357                CGUAR = 'YES'
358 
359                IF (CWISE_BND .GT. ERRTHRESH) THEN
360                   TSTRAT(2= 1/(2.0*EPS)
361                ELSE
362                   IF (CWISE_BND .NE. 0.0THEN
363                      TSTRAT(2= CWISE_ERR / CWISE_BND
364                   ELSE IF (CWISE_ERR .NE. 0.0THEN
365                      TSTRAT(2= 1/(16.0*EPS)
366                   ELSE
367                      TSTRAT(2= 0.0
368                   END IF
369                   IF (TSTRAT(2.GT. 1.0) TSTRAT(2= 1/(4.0*EPS)
370                END IF
371             ELSE
372                CGUAR = 'NO'
373                IF (CWISE_BND .LT. 1.0THEN
374                   TSTRAT(2= 1/(8.0*EPS)
375                ELSE
376                   TSTRAT(2= 1.0
377                END IF
378             END IF
379 
380 !     Backwards error test
381             TSTRAT(3= BERR(K)/EPS
382 
383 !     Condition number tests
384             TSTRAT(4= RCOND / ORCOND
385             IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4.LT. 1.0)
386      $         TSTRAT(4= 1.0 / TSTRAT(4)
387 
388             TSTRAT(5= NCOND / NWISE_RCOND
389             IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5.LT. 1.0)
390      $         TSTRAT(5= 1.0 / TSTRAT(5)
391 
392             TSTRAT(6= CCOND / NWISE_RCOND
393             IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6.LT. 1.0)
394      $         TSTRAT(6= 1.0 / TSTRAT(6)
395 
396             DO I = 1, NTESTS
397                IF (TSTRAT(I) .GT. THRESH) THEN
398                   IF (.NOT.PRINTED_GUIDE) THEN
399                      WRITE(*,*)
400                      WRITE*99961
401                      WRITE*99952
402                      WRITE*99943
403                      WRITE*99934
404                      WRITE*99925
405                      WRITE*99916
406                      WRITE*99907
407                      WRITE*99898
408                      WRITE(*,*)
409                      PRINTED_GUIDE = .TRUE.
410                   END IF
411                   WRITE*9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I)
412                   NFAIL = NFAIL + 1
413                END IF
414             END DO
415       END DO
416 
417 c$$$         WRITE(*,*)
418 c$$$         WRITE(*,*) 'Normwise Error Bounds'
419 c$$$         WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
420 c$$$         WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
421 c$$$         WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
422 c$$$         WRITE(*,*)
423 c$$$         WRITE(*,*) 'Componentwise Error Bounds'
424 c$$$         WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
425 c$$$         WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
426 c$$$         WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
427 c$$$         print *, 'Info: ', info
428 c$$$         WRITE(*,*)
429 *         WRITE(*,*) 'TSTRAT: ',TSTRAT
430 
431       END DO
432 
433       WRITE(*,*)
434       IF( NFAIL .GT. 0 ) THEN
435          WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS
436       ELSE
437          WRITE(*,9997) C2
438       END IF
439  9999 FORMAT' S', A2, 'SVXX: N =', I2, ', RHS = ', I2,
440      $     ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A,
441      $     ' test(',I1,') ='G12.5 )
442  9998 FORMAT' S', A2, 'SVXX: ', I6, ' out of ', I6,
443      $     ' tests failed to pass the threshold' )
444  9997 FORMAT' S', A2, 'SVXX passed the tests of error bounds' )
445 *     Test ratios.
446  9996 FORMAT3X, I2, ': Normwise guaranteed forward error'/ 5X,
447      $     'Guaranteed case: if norm ( abs( Xc - Xt )',
448      $     ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then',
449      $     / 5X,
450      $     'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS')
451  9995 FORMAT3X, I2, ': Componentwise guaranteed forward error' )
452  9994 FORMAT3X, I2, ': Backwards error' )
453  9993 FORMAT3X, I2, ': Reciprocal condition number' )
454  9992 FORMAT3X, I2, ': Reciprocal normwise condition number' )
455  9991 FORMAT3X, I2, ': Raw normwise error estimate' )
456  9990 FORMAT3X, I2, ': Reciprocal componentwise condition number' )
457  9989 FORMAT3X, I2, ': Raw componentwise error estimate' )
458 
459  8000 FORMAT' S', A2, 'SVXX: N =', I2, ', INFO = ', I3,
460      $     ', ORCOND = 'G12.5', real RCOND = 'G12.5 )
461 
462       END