1       SUBROUTINE STBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  2      $                   LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS )
  3 *
  4 *  -- LAPACK test routine (version 3.1) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, TRANS, UPLO
 10       INTEGER            KD, LDAB, LDB, LDX, LDXACT, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       REAL               AB( LDAB, * ), B( LDB, * ), BERR( * ),
 14      $                   FERR( * ), RESLTS( * ), X( LDX, * ),
 15      $                   XACT( LDXACT, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  STBT05 tests the error bounds from iterative refinement for the
 22 *  computed solution to a system of equations A*X = B, where A is a
 23 *  triangular band matrix.
 24 *
 25 *  RESLTS(1) = test of the error bound
 26 *            = norm(X - XACT) / ( norm(X) * FERR )
 27 *
 28 *  A large value is returned if this ratio is not less than one.
 29 *
 30 *  RESLTS(2) = residual from the iterative refinement routine
 31 *            = the maximum of BERR / ( NZ*EPS + (*) ), where
 32 *              (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 33 *              and NZ = max. number of nonzeros in any row of A, plus 1
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  UPLO    (input) CHARACTER*1
 39 *          Specifies whether the matrix A is upper or lower triangular.
 40 *          = 'U':  Upper triangular
 41 *          = 'L':  Lower triangular
 42 *
 43 *  TRANS   (input) CHARACTER*1
 44 *          Specifies the form of the system of equations.
 45 *          = 'N':  A * X = B  (No transpose)
 46 *          = 'T':  A'* X = B  (Transpose)
 47 *          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
 48 *
 49 *  DIAG    (input) CHARACTER*1
 50 *          Specifies whether or not the matrix A is unit triangular.
 51 *          = 'N':  Non-unit triangular
 52 *          = 'U':  Unit triangular
 53 *
 54 *  N       (input) INTEGER
 55 *          The number of rows of the matrices X, B, and XACT, and the
 56 *          order of the matrix A.  N >= 0.
 57 *
 58 *  KD      (input) INTEGER
 59 *          The number of super-diagonals of the matrix A if UPLO = 'U',
 60 *          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
 61 *
 62 *  NRHS    (input) INTEGER
 63 *          The number of columns of the matrices X, B, and XACT.
 64 *          NRHS >= 0.
 65 *
 66 *  AB      (input) REAL array, dimension (LDAB,N)
 67 *          The upper or lower triangular band matrix A, stored in the
 68 *          first kd+1 rows of the array. The j-th column of A is stored
 69 *          in the j-th column of the array AB as follows:
 70 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 71 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 72 *          If DIAG = 'U', the diagonal elements of A are not referenced
 73 *          and are assumed to be 1.
 74 *
 75 *  LDAB    (input) INTEGER
 76 *          The leading dimension of the array AB.  LDAB >= KD+1.
 77 *
 78 *  B       (input) REAL array, dimension (LDB,NRHS)
 79 *          The right hand side vectors for the system of linear
 80 *          equations.
 81 *
 82 *  LDB     (input) INTEGER
 83 *          The leading dimension of the array B.  LDB >= max(1,N).
 84 *
 85 *  X       (input) REAL array, dimension (LDX,NRHS)
 86 *          The computed solution vectors.  Each vector is stored as a
 87 *          column of the matrix X.
 88 *
 89 *  LDX     (input) INTEGER
 90 *          The leading dimension of the array X.  LDX >= max(1,N).
 91 *
 92 *  XACT    (input) REAL array, dimension (LDX,NRHS)
 93 *          The exact solution vectors.  Each vector is stored as a
 94 *          column of the matrix XACT.
 95 *
 96 *  LDXACT  (input) INTEGER
 97 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 98 *
 99 *  FERR    (input) REAL array, dimension (NRHS)
100 *          The estimated forward error bounds for each solution vector
101 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
102 *          of the largest entry in (X - XTRUE) divided by the magnitude
103 *          of the largest entry in X.
104 *
105 *  BERR    (input) REAL array, dimension (NRHS)
106 *          The componentwise relative backward error of each solution
107 *          vector (i.e., the smallest relative change in any entry of A
108 *          or B that makes X an exact solution).
109 *
110 *  RESLTS  (output) REAL array, dimension (2)
111 *          The maximum over the NRHS solution vectors of the ratios:
112 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
113 *          RESLTS(2) = BERR / ( NZ*EPS + (*) )
114 *
115 *  =====================================================================
116 *
117 *     .. Parameters ..
118       REAL               ZERO, ONE
119       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
120 *     ..
121 *     .. Local Scalars ..
122       LOGICAL            NOTRAN, UNIT, UPPER
123       INTEGER            I, IFU, IMAX, J, K, NZ
124       REAL               AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
125 *     ..
126 *     .. External Functions ..
127       LOGICAL            LSAME
128       INTEGER            ISAMAX
129       REAL               SLAMCH
130       EXTERNAL           LSAME, ISAMAX, SLAMCH
131 *     ..
132 *     .. Intrinsic Functions ..
133       INTRINSIC          ABSMAXMIN
134 *     ..
135 *     .. Executable Statements ..
136 *
137 *     Quick exit if N = 0 or NRHS = 0.
138 *
139       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
140          RESLTS( 1 ) = ZERO
141          RESLTS( 2 ) = ZERO
142          RETURN
143       END IF
144 *
145       EPS = SLAMCH( 'Epsilon' )
146       UNFL = SLAMCH( 'Safe minimum' )
147       OVFL = ONE / UNFL
148       UPPER = LSAME( UPLO, 'U' )
149       NOTRAN = LSAME( TRANS, 'N' )
150       UNIT = LSAME( DIAG, 'U' )
151       NZ = MIN( KD, N-1 ) + 1
152 *
153 *     Test 1:  Compute the maximum of
154 *        norm(X - XACT) / ( norm(X) * FERR )
155 *     over all the vectors X and XACT using the infinity-norm.
156 *
157       ERRBND = ZERO
158       DO 30 J = 1, NRHS
159          IMAX = ISAMAX( N, X( 1, J ), 1 )
160          XNORM = MAXABS( X( IMAX, J ) ), UNFL )
161          DIFF = ZERO
162          DO 10 I = 1, N
163             DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
164    10    CONTINUE
165 *
166          IF( XNORM.GT.ONE ) THEN
167             GO TO 20
168          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
169             GO TO 20
170          ELSE
171             ERRBND = ONE / EPS
172             GO TO 30
173          END IF
174 *
175    20    CONTINUE
176          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
177             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
178          ELSE
179             ERRBND = ONE / EPS
180          END IF
181    30 CONTINUE
182       RESLTS( 1 ) = ERRBND
183 *
184 *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
185 *     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
186 *
187       IFU = 0
188       IFUNIT )
189      $   IFU = 1
190       DO 90 K = 1, NRHS
191          DO 80 I = 1, N
192             TMP = ABS( B( I, K ) )
193             IF( UPPER ) THEN
194                IF.NOT.NOTRAN ) THEN
195                   DO 40 J = MAX( I-KD, 1 ), I - IFU
196                      TMP = TMP + ABS( AB( KD+1-I+J, I ) )*
197      $                     ABS( X( J, K ) )
198    40             CONTINUE
199                   IFUNIT )
200      $               TMP = TMP + ABS( X( I, K ) )
201                ELSE
202                   IFUNIT )
203      $               TMP = TMP + ABS( X( I, K ) )
204                   DO 50 J = I + IFU, MIN( I+KD, N )
205                      TMP = TMP + ABS( AB( KD+1+I-J, J ) )*
206      $                     ABS( X( J, K ) )
207    50             CONTINUE
208                END IF
209             ELSE
210                IF( NOTRAN ) THEN
211                   DO 60 J = MAX( I-KD, 1 ), I - IFU
212                      TMP = TMP + ABS( AB( 1+I-J, J ) )*ABS( X( J, K ) )
213    60             CONTINUE
214                   IFUNIT )
215      $               TMP = TMP + ABS( X( I, K ) )
216                ELSE
217                   IFUNIT )
218      $               TMP = TMP + ABS( X( I, K ) )
219                   DO 70 J = I + IFU, MIN( I+KD, N )
220                      TMP = TMP + ABS( AB( 1+J-I, I ) )*ABS( X( J, K ) )
221    70             CONTINUE
222                END IF
223             END IF
224             IF( I.EQ.1 ) THEN
225                AXBI = TMP
226             ELSE
227                AXBI = MIN( AXBI, TMP )
228             END IF
229    80    CONTINUE
230          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
231          IF( K.EQ.1 ) THEN
232             RESLTS( 2 ) = TMP
233          ELSE
234             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
235          END IF
236    90 CONTINUE
237 *
238       RETURN
239 *
240 *     End of STBT05
241 *
242       END