1       SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
  2      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
  3      $                   NOUT )
  4 *
  5 *  -- LAPACK test routine (version 3.3.1) --
  6 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       LOGICAL            TSTERR
 11       INTEGER            NMAX, NN, NOUT, NRHS
 12       DOUBLE PRECISION   THRESH
 13 *     ..
 14 *     .. Array Arguments ..
 15       LOGICAL            DOTYPE( * )
 16       INTEGER            IWORK( * ), NVAL( * )
 17       DOUBLE PRECISION   RWORK( * )
 18       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
 19      $                   WORK( * ), X( * ), XACT( * )
 20 *     ..
 21 *
 22 *  Purpose
 23 *  =======
 24 *
 25 *  ZDRVHE tests the driver routines ZHESV, -SVX, and -SVXX.
 26 *
 27 *  Note that this file is used only when the XBLAS are available,
 28 *  otherwise zdrvhe.f defines this subroutine.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
 34 *          The matrix types to be used for testing.  Matrices of type j
 35 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 36 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 37 *
 38 *  NN      (input) INTEGER
 39 *          The number of values of N contained in the vector NVAL.
 40 *
 41 *  NVAL    (input) INTEGER array, dimension (NN)
 42 *          The values of the matrix dimension N.
 43 *
 44 *  NRHS    (input) INTEGER
 45 *          The number of right hand side vectors to be generated for
 46 *          each linear system.
 47 *
 48 *  THRESH  (input) DOUBLE PRECISION
 49 *          The threshold value for the test ratios.  A result is
 50 *          included in the output file if RESULT >= THRESH.  To have
 51 *          every test ratio printed, use THRESH = 0.
 52 *
 53 *  TSTERR  (input) LOGICAL
 54 *          Flag that indicates whether error exits are to be tested.
 55 *
 56 *  NMAX    (input) INTEGER
 57 *          The maximum value permitted for N, used in dimensioning the
 58 *          work arrays.
 59 *
 60 *  A       (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
 61 *
 62 *  AFAC    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
 63 *
 64 *  AINV    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
 65 *
 66 *  B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
 67 *
 68 *  X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
 69 *
 70 *  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
 71 *
 72 *  WORK    (workspace) COMPLEX*16 array, dimension
 73 *                      (NMAX*max(2,NRHS))
 74 *
 75 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
 76 *
 77 *  IWORK   (workspace) INTEGER array, dimension (NMAX)
 78 *
 79 *  NOUT    (input) INTEGER
 80 *          The unit number for output.
 81 *
 82 *  =====================================================================
 83 *
 84 *     .. Parameters ..
 85       DOUBLE PRECISION   ONE, ZERO
 86       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 87       INTEGER            NTYPES, NTESTS
 88       PARAMETER          ( NTYPES = 10, NTESTS = 6 )
 89       INTEGER            NFACT
 90       PARAMETER          ( NFACT = 2 )
 91 *     ..
 92 *     .. Local Scalars ..
 93       LOGICAL            ZEROT
 94       CHARACTER          DIST, EQUED, FACT, TYPE, UPLO, XTYPE
 95       CHARACTER*3        PATH
 96       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
 97      $                   IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
 98      $                   NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT,
 99      $                   N_ERR_BNDS
100       DOUBLE PRECISION   AINVNM, ANORM, CNDNUM, RCOND, RCONDC,
101      $                   RPVGRW_SVXX
102 *     ..
103 *     .. Local Arrays ..
104       CHARACTER          FACTS( NFACT ), UPLOS( 2 )
105       INTEGER            ISEED( 4 ), ISEEDY( 4 )
106       DOUBLE PRECISION   RESULT( NTESTS ), BERR( NRHS ),
107      $                   ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
108 *     ..
109 *     .. External Functions ..
110       DOUBLE PRECISION   DGET06, ZLANHE
111       EXTERNAL           DGET06, ZLANHE
112 *     ..
113 *     .. External Subroutines ..
114       EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
115      $                   ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI2, ZLACPY,
116      $                   ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02,
117      $                   ZPOT05, ZHESVXX
118 *     ..
119 *     .. Scalars in Common ..
120       LOGICAL            LERR, OK
121       CHARACTER*32       SRNAMT
122       INTEGER            INFOT, NUNIT
123 *     ..
124 *     .. Common blocks ..
125       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
126       COMMON             / SRNAMC / SRNAMT
127 *     ..
128 *     .. Intrinsic Functions ..
129       INTRINSIC          DCMPLXMAXMIN
130 *     ..
131 *     .. Data statements ..
132       DATA               ISEEDY / 1988198919901991 /
133       DATA               UPLOS / 'U''L' / , FACTS / 'F''N' /
134 *     ..
135 *     .. Executable Statements ..
136 *
137 *     Initialize constants and the random number seed.
138 *
139       PATH( 11 ) = 'Z'
140       PATH( 23 ) = 'HE'
141       NRUN = 0
142       NFAIL = 0
143       NERRS = 0
144       DO 10 I = 14
145          ISEED( I ) = ISEEDY( I )
146    10 CONTINUE
147       LWORK = MAX2*NMAX, NMAX*NRHS )
148 *
149 *     Test the error exits
150 *
151       IF( TSTERR )
152      $   CALL ZERRVX( PATH, NOUT )
153       INFOT = 0
154 *
155 *     Set the block size and minimum block size for testing.
156 *
157       NB = 1
158       NBMIN = 2
159       CALL XLAENV( 1, NB )
160       CALL XLAENV( 2, NBMIN )
161 *
162 *     Do for each value of N in NVAL
163 *
164       DO 180 IN = 1, NN
165          N = NVAL( IN )
166          LDA = MAX( N, 1 )
167          XTYPE = 'N'
168          NIMAT = NTYPES
169          IF( N.LE.0 )
170      $      NIMAT = 1
171 *
172          DO 170 IMAT = 1, NIMAT
173 *
174 *           Do the tests only if DOTYPE( IMAT ) is true.
175 *
176             IF.NOT.DOTYPE( IMAT ) )
177      $         GO TO 170
178 *
179 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
180 *
181             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
182             IF( ZEROT .AND. N.LT.IMAT-2 )
183      $         GO TO 170
184 *
185 *           Do first for UPLO = 'U', then for UPLO = 'L'
186 *
187             DO 160 IUPLO = 12
188                UPLO = UPLOS( IUPLO )
189 *
190 *              Set up parameters with ZLATB4 and generate a test matrix
191 *              with ZLATMS.
192 *
193                CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
194      $                      CNDNUM, DIST )
195 *
196                SRNAMT = 'ZLATMS'
197                CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
198      $                      CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
199      $                      INFO )
200 *
201 *              Check error code from ZLATMS.
202 *
203                IF( INFO.NE.0 ) THEN
204                   CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
205      $                         -1-1, IMAT, NFAIL, NERRS, NOUT )
206                   GO TO 160
207                END IF
208 *
209 *              For types 3-6, zero one or more rows and columns of the
210 *              matrix to test that INFO is returned correctly.
211 *
212                IF( ZEROT ) THEN
213                   IF( IMAT.EQ.3 ) THEN
214                      IZERO = 1
215                   ELSE IF( IMAT.EQ.4 ) THEN
216                      IZERO = N
217                   ELSE
218                      IZERO = N / 2 + 1
219                   END IF
220 *
221                   IF( IMAT.LT.6 ) THEN
222 *
223 *                    Set row and column IZERO to zero.
224 *
225                      IF( IUPLO.EQ.1 ) THEN
226                         IOFF = ( IZERO-1 )*LDA
227                         DO 20 I = 1, IZERO - 1
228                            A( IOFF+I ) = ZERO
229    20                   CONTINUE
230                         IOFF = IOFF + IZERO
231                         DO 30 I = IZERO, N
232                            A( IOFF ) = ZERO
233                            IOFF = IOFF + LDA
234    30                   CONTINUE
235                      ELSE
236                         IOFF = IZERO
237                         DO 40 I = 1, IZERO - 1
238                            A( IOFF ) = ZERO
239                            IOFF = IOFF + LDA
240    40                   CONTINUE
241                         IOFF = IOFF - IZERO
242                         DO 50 I = IZERO, N
243                            A( IOFF+I ) = ZERO
244    50                   CONTINUE
245                      END IF
246                   ELSE
247                      IOFF = 0
248                      IF( IUPLO.EQ.1 ) THEN
249 *
250 *                       Set the first IZERO rows and columns to zero.
251 *
252                         DO 70 J = 1, N
253                            I2 = MIN( J, IZERO )
254                            DO 60 I = 1, I2
255                               A( IOFF+I ) = ZERO
256    60                      CONTINUE
257                            IOFF = IOFF + LDA
258    70                   CONTINUE
259                      ELSE
260 *
261 *                       Set the last IZERO rows and columns to zero.
262 *
263                         DO 90 J = 1, N
264                            I1 = MAX( J, IZERO )
265                            DO 80 I = I1, N
266                               A( IOFF+I ) = ZERO
267    80                      CONTINUE
268                            IOFF = IOFF + LDA
269    90                   CONTINUE
270                      END IF
271                   END IF
272                ELSE
273                   IZERO = 0
274                END IF
275 *
276 *              Set the imaginary part of the diagonals.
277 *
278                CALL ZLAIPD( N, A, LDA+10 )
279 *
280                DO 150 IFACT = 1, NFACT
281 *
282 *                 Do first for FACT = 'F', then for other values.
283 *
284                   FACT = FACTS( IFACT )
285 *
286 *                 Compute the condition number for comparison with
287 *                 the value returned by ZHESVX.
288 *
289                   IF( ZEROT ) THEN
290                      IF( IFACT.EQ.1 )
291      $                  GO TO 150
292                      RCONDC = ZERO
293 *
294                   ELSE IF( IFACT.EQ.1 ) THEN
295 *
296 *                    Compute the 1-norm of A.
297 *
298                      ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
299 *
300 *                    Factor the matrix A.
301 *
302                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
303                      CALL ZHETRF( UPLO, N, AFAC, LDA, IWORK, WORK,
304      $                            LWORK, INFO )
305 *
306 *                    Compute inv(A) and take its norm.
307 *
308                      CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
309                      LWORK = (N+NB+1)*(NB+3)
310                      CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
311      $                            LWORK, INFO )
312                      AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK )
313 *
314 *                    Compute the 1-norm condition number of A.
315 *
316                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
317                         RCONDC = ONE
318                      ELSE
319                         RCONDC = ( ONE / ANORM ) / AINVNM
320                      END IF
321                   END IF
322 *
323 *                 Form an exact solution and set the right hand side.
324 *
325                   SRNAMT = 'ZLARHS'
326                   CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
327      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
328      $                         INFO )
329                   XTYPE = 'C'
330 *
331 *                 --- Test ZHESV  ---
332 *
333                   IF( IFACT.EQ.2 ) THEN
334                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
335                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
336 *
337 *                    Factor the matrix and solve the system using ZHESV.
338 *
339                      SRNAMT = 'ZHESV '
340                      CALL ZHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
341      $                           LDA, WORK, LWORK, INFO )
342 *
343 *                    Adjust the expected value of INFO to account for
344 *                    pivoting.
345 *
346                      K = IZERO
347                      IF( K.GT.0 ) THEN
348   100                   CONTINUE
349                         IF( IWORK( K ).LT.0 ) THEN
350                            IF( IWORK( K ).NE.-K ) THEN
351                               K = -IWORK( K )
352                               GO TO 100
353                            END IF
354                         ELSE IF( IWORK( K ).NE.K ) THEN
355                            K = IWORK( K )
356                            GO TO 100
357                         END IF
358                      END IF
359 *
360 *                    Check error code from ZHESV .
361 *
362                      IF( INFO.NE.K ) THEN
363                         CALL ALAERH( PATH, 'ZHESV ', INFO, K, UPLO, N,
364      $                               N, -1-1, NRHS, IMAT, NFAIL,
365      $                               NERRS, NOUT )
366                         GO TO 120
367                      ELSE IF( INFO.NE.0 ) THEN
368                         GO TO 120
369                      END IF
370 *
371 *                    Reconstruct matrix from factors and compute
372 *                    residual.
373 *
374                      CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
375      $                            AINV, LDA, RWORK, RESULT1 ) )
376 *
377 *                    Compute residual of the computed solution.
378 *
379                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
380                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
381      $                            LDA, RWORK, RESULT2 ) )
382 *
383 *                    Check solution from generated exact solution.
384 *
385                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
386      $                            RESULT3 ) )
387                      NT = 3
388 *
389 *                    Print information about the tests that did not pass
390 *                    the threshold.
391 *
392                      DO 110 K = 1, NT
393                         IFRESULT( K ).GE.THRESH ) THEN
394                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
395      $                        CALL ALADHD( NOUT, PATH )
396                            WRITE( NOUT, FMT = 9999 )'ZHESV ', UPLO, N,
397      $                        IMAT, K, RESULT( K )
398                            NFAIL = NFAIL + 1
399                         END IF
400   110                CONTINUE
401                      NRUN = NRUN + NT
402   120                CONTINUE
403                   END IF
404 *
405 *                 --- Test ZHESVX ---
406 *
407                   IF( IFACT.EQ.2 )
408      $               CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ),
409      $                            DCMPLX( ZERO ), AFAC, LDA )
410                   CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
411      $                         DCMPLX( ZERO ), X, LDA )
412 *
413 *                 Solve the system and compute the condition number and
414 *                 error bounds using ZHESVX.
415 *
416                   SRNAMT = 'ZHESVX'
417                   CALL ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
418      $                         IWORK, B, LDA, X, LDA, RCOND, RWORK,
419      $                         RWORK( NRHS+1 ), WORK, LWORK,
420      $                         RWORK( 2*NRHS+1 ), INFO )
421 *
422 *                 Adjust the expected value of INFO to account for
423 *                 pivoting.
424 *
425                   K = IZERO
426                   IF( K.GT.0 ) THEN
427   130                CONTINUE
428                      IF( IWORK( K ).LT.0 ) THEN
429                         IF( IWORK( K ).NE.-K ) THEN
430                            K = -IWORK( K )
431                            GO TO 130
432                         END IF
433                      ELSE IF( IWORK( K ).NE.K ) THEN
434                         K = IWORK( K )
435                         GO TO 130
436                      END IF
437                   END IF
438 *
439 *                 Check the error code from ZHESVX.
440 *
441                   IF( INFO.NE.K ) THEN
442                      CALL ALAERH( PATH, 'ZHESVX', INFO, K, FACT // UPLO,
443      $                            N, N, -1-1, NRHS, IMAT, NFAIL,
444      $                            NERRS, NOUT )
445                      GO TO 150
446                   END IF
447 *
448                   IF( INFO.EQ.0 ) THEN
449                      IF( IFACT.GE.2 ) THEN
450 *
451 *                       Reconstruct matrix from factors and compute
452 *                       residual.
453 *
454                         CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
455      $                               AINV, LDA, RWORK( 2*NRHS+1 ),
456      $                               RESULT1 ) )
457                         K1 = 1
458                      ELSE
459                         K1 = 2
460                      END IF
461 *
462 *                    Compute residual of the computed solution.
463 *
464                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
465                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
466      $                            LDA, RWORK( 2*NRHS+1 ), RESULT2 ) )
467 *
468 *                    Check solution from generated exact solution.
469 *
470                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
471      $                            RESULT3 ) )
472 *
473 *                    Check the error bounds from iterative refinement.
474 *
475                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
476      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
477      $                            RESULT4 ) )
478                   ELSE
479                      K1 = 6
480                   END IF
481 *
482 *                 Compare RCOND from ZHESVX with the computed value
483 *                 in RCONDC.
484 *
485                   RESULT6 ) = DGET06( RCOND, RCONDC )
486 *
487 *                 Print information about the tests that did not pass
488 *                 the threshold.
489 *
490                   DO 140 K = K1, 6
491                      IFRESULT( K ).GE.THRESH ) THEN
492                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
493      $                     CALL ALADHD( NOUT, PATH )
494                         WRITE( NOUT, FMT = 9998 )'ZHESVX', FACT, UPLO,
495      $                     N, IMAT, K, RESULT( K )
496                         NFAIL = NFAIL + 1
497                      END IF
498   140             CONTINUE
499                   NRUN = NRUN + 7 - K1
500 *
501 *                 --- Test ZHESVXX ---
502 *
503 *                 Restore the matrices A and B.
504 *
505                   IF( IFACT.EQ.2 )
506      $               CALL ZLASET( UPLO, N, N, CMPLX( ZERO ),
507      $                 CMPLX( ZERO ), AFAC, LDA )
508                   CALL ZLASET( 'Full', N, NRHS, CMPLX( ZERO ),
509      $                 CMPLX( ZERO ), X, LDA )
510 *
511 *                 Solve the system and compute the condition number
512 *                 and error bounds using ZHESVXX.
513 *
514                   SRNAMT = 'ZHESVXX'
515                   N_ERR_BNDS = 3
516                   EQUED = 'N'
517                   CALL ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC,
518      $                 LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X,
519      $                 LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
520      $                 ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
521      $                 IWORK( N+1 ), INFO )
522 *
523 *                 Adjust the expected value of INFO to account for
524 *                 pivoting.
525 *
526                   K = IZERO
527                   IF( K.GT.0 ) THEN
528  135                 CONTINUE
529                      IF( IWORK( K ).LT.0 ) THEN
530                         IF( IWORK( K ).NE.-K ) THEN
531                            K = -IWORK( K )
532                            GO TO 135
533                         END IF
534                      ELSE IF( IWORK( K ).NE.K ) THEN
535                         K = IWORK( K )
536                         GO TO 135
537                      END IF
538                   END IF
539 *
540 *                 Check the error code from ZHESVXX.
541 *
542                   IF( INFO.NE.K ) THEN
543                      CALL ALAERH( PATH, 'ZHESVXX', INFO, K,
544      $                    FACT // UPLO, N, N, -1-1, NRHS, IMAT, NFAIL,
545      $                    NERRS, NOUT )
546                      GO TO 150
547                   END IF
548 *
549                   IF( INFO.EQ.0 ) THEN
550                      IF( IFACT.GE.2 ) THEN
551 *
552 *                 Reconstruct matrix from factors and compute
553 *                 residual.
554 *
555                         CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
556      $                       AINV, LDA, RWORK(2*NRHS+1),
557      $                       RESULT1 ) )
558                         K1 = 1
559                      ELSE
560                         K1 = 2
561                      END IF
562 *
563 *                 Compute residual of the computed solution.
564 *
565                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
566                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
567      $                    LDA, RWORK( 2*NRHS+1 ), RESULT2 ) )
568                      RESULT2 ) = 0.0
569 *
570 *                 Check solution from generated exact solution.
571 *
572                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
573      $                    RESULT3 ) )
574 *
575 *                 Check the error bounds from iterative refinement.
576 *
577                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
578      $                    XACT, LDA, RWORK, RWORK( NRHS+1 ),
579      $                    RESULT4 ) )
580                   ELSE
581                      K1 = 6
582                   END IF
583 *
584 *                 Compare RCOND from ZHESVXX with the computed value
585 *                 in RCONDC.
586 *
587                   RESULT6 ) = DGET06( RCOND, RCONDC )
588 *
589 *                 Print information about the tests that did not pass
590 *                 the threshold.
591 *
592                   DO 85 K = K1, 6
593                      IFRESULT( K ).GE.THRESH ) THEN
594                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
595      $                       CALL ALADHD( NOUT, PATH )
596                         WRITE( NOUT, FMT = 9998 )'ZHESVXX',
597      $                       FACT, UPLO, N, IMAT, K,
598      $                       RESULT( K )
599                         NFAIL = NFAIL + 1
600                      END IF
601  85               CONTINUE
602                   NRUN = NRUN + 7 - K1
603 *
604   150          CONTINUE
605 *
606   160       CONTINUE
607   170    CONTINUE
608   180 CONTINUE
609 *
610 *     Print a summary of the results.
611 *
612       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
613 *
614 
615 *     Test Error Bounds from ZHESVXX
616 
617       CALL ZEBCHVXX(THRESH, PATH)
618 
619  9999 FORMAT1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
620      $      ', test ', I2, ', ratio ='G12.5 )
621  9998 FORMAT1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
622      $      ', type ', I2, ', test ', I2, ', ratio ='G12.5 )
623       RETURN
624 *
625 *     End of ZDRVHE
626 *
627       END